418 research outputs found

    Quasi-free π0\pi^0 Photoproduction from the Bound Nucleon

    Full text link
    Differential cross-sections for quasi-free π0\pi^0 photoproduction from the proton and neutron bound in the deuteron have been measured for Eγ=200400E_\gamma= 200 - 400 MeV at θγlab=136.2\theta^{\rm lab}_\gamma = 136.2^\circ usind the Glasgow photon tagger at MAMI, the Mainz 48 cm \varnothing ×\times 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. For the proton measurements made with both liquid deuterium and liquid hydrogen targets allow direct comparison of "free" π0\pi^0 photoproduction cross-sections as extracted from the bound proton data with experimental free cross sections which are found to be in reasonable agreement below 320 MeV. At higher energies the "free" cross sections extracted from quasifree data are significantly smaller than the experimental free cross sections and theoretical predictions based on multipole analysis. For the first time, "free" neutron cross sections have been extracted in the Δ\Delta-region. They are also in agreement with the predictions from multipole analysis up to 320 MeV and significantly smaller at higher photon energies

    Analysis of environmental influences in nuclear half-life measurements exhibiting time-dependent decay rates

    Full text link
    In a recent series of papers evidence has been presented for correlations between solar activity and nuclear decay rates. This includes an apparent correlation between Earth-Sun distance and data taken at Brookhaven National Laboratory (BNL), and at the Physikalisch-Technische Bundesanstalt (PTB). Although these correlations could arise from a direct interaction between the decaying nuclei and some particles or fields emanating from the Sun, they could also represent an "environmental" effect arising from a seasonal variation of the sensitivities of the BNL and PTB detectors due to changes in temperature, relative humidity, background radiation, etc. In this paper, we present a detailed analysis of the responses of the detectors actually used in the BNL and PTB experiments, and show that sensitivities to seasonal variations in the respective detectors are likely too small to produce the observed fluctuations

    Neutron polarizabilities investigated by quasi-free Compton scattering from the deuteron

    Full text link
    Measuring Compton scattered photons and recoil neutrons in coincidence, quasi-free Compton scattering by the neutron has been investigated at MAMI (Mainz) at thetaγlab=136otheta^{lab}_\gamma=136^o in an energy range from 200 to 400 MeV. From the data a polarizability difference of αnβn=9.8±3.6(stat)1.1+2.1(syst)±2.2(model)\alpha_n - \beta_n = 9.8 \pm 3.6(stat)^{+2.1}_{-1.1}(syst)\pm 2.2(model) in units of 104fm310^{-4}fm^3 has been determined. In combination with the polarizability sum αn+βn=15.2±0.5\alpha_n+\beta_n= 15.2\pm 0.5 deduced from photo absorption data, the neutron electric and magnetic polarizabilities, αn=12.5±1.8(stat)0.6+1.1(syst)±1.1(model)\alpha_n=12.5\pm 1.8(stat)^{+1.1}_{-0.6}(syst)\pm 1.1(model) and βn=2.71.8(stat)1.1+0.6(syst)1.1(model)\beta_n = 2.7\mp 1.8(stat)^{+0.6}_{-1.1}(syst)\mp 1.1(model), are obtained

    Exclusive measurement of coherent eta photoproduction from the deuteron

    Get PDF
    Coherent photoproduction of eta mesons from the deuteron has been measured from threshold up to incident photon energies of 750 MeV using the photon spectrometer TAPS at the tagged photon facility at the Mainz microtron MAMI. For the first time, differential coherent cross sections have been deduced from the coincident detection of the eta meson and the recoil deuteron. A missing energy analysis was used for the suppression of background events so that a very clean identification of coherent eta-photoproduction was achieved. The resulting cross sections agree with previous experimental results except for angles around 90 deg in the photon-deuteron cm-system where they are smaller. They are compared to various model calculations.Comment: 4 pages, 4 figure

    Virtual Compton Scattering at Low Energy and the Generalized Polarizabilities of the Nucleon o

    Get PDF
    Virtual Compton Scattering on the nucleon: γNγN\gamma^* N \to \gamma N is a new and rapidly developing field at low and high energies. This lecture is about the low energy part, i.e. for energies in the (γp)(\gamma p) center-of-mass mainly up to the Δ(1232)\Delta(1232) resonance region. I review the concept of Generalized Polarizabilities of the Nucleon, and the experiments dedicated to their measurement.Comment: 16 pages, 8 figures. lecture given at the Erice School "Lepton Scattering and the Structure of Hadrons and Nuclei," Erice, 16 - 24 Sept. 2004; to appear in "Progress in Particle and Nuclear Physics

    Quasi-free Compton Scattering and the Polarizabilities of the Neutron

    Full text link
    Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm \oslash ×\times 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at θγLAB=136.2\theta^{LAB}_\gamma=136.2^\circ. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction p(γ,π+n)p(\gamma,\pi^+ n). The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be αβ=9.8±3.6(stat)12.1.1(syst)±2.2(model)\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model) in units 104fm310^{-4}fm^3. In combination with the polarizability sum α+β=15.2±0.5\alpha +\beta=15.2\pm 0.5 deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, αn=12.5±1.8(stat)0.6+1.1±1.1(model)\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model) and βn=2.71.8(stat)1.1+0.6(syst)1.1(model)\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model) are obtained. The backward spin polarizability of the neutron was determined to be γπ(n)=(58.6±4.0)×104fm4\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4

    Compton Scattering by the Proton using a Large-Acceptance Arrangement

    Full text link
    Compton scattering by the proton has been measured using the tagged-photon facility at MAMI (Mainz) and the large-acceptance arrangement LARA. The new data are interpreted in terms of dispersion theory based on the SAID-SM99K parameterization of photo-meson amplitudes. It is found that two-pion exchange in the t-channel is needed for a description of the data in the second resonance region. The data are well represented if this channel is modeled by a single pole with mass parameter m(sigma)=600 MeV. The asymptotic part of the spin dependent amplitude is found to be well represented by pi-0-exchange in the t-channel. A backward spin-polarizability of gamma(pi)=(-37.1+-0.6(stat+syst)+-3.0(model))x10^{-4}fm^4 has been determined from data of the first resonance region below 455 MeV. This value is in a good agreement with predictions of dispersion relations and chiral pertubation theory. From a subset of data between 280 and 360 MeV the resonance pion-photoproduction amplitudes were evaluated leading to a E2/M1 multipole ratio of the p-to-Delta radiative transition of EMR(340 MeV)=(-1.7+-0.4(stat+syst)+-0.2(model))%. It was found that this number is dependent on the parameterization of photo-meson amplitudes. With the MAID2K parameterization an E2/M1 multipole ratio of EMR(340 MeV)=(-2.0+-0.4(stat+syst)+-0.2(model))% is obtained
    corecore