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We present a particular kind of (e, e′p) experiments, which has opened a
new field of investigation of nucleon structure in the last ten years. The exclusive
photon electroproduction process p(e, e′p)γ is used to study Virtual Compton
Scattering (VCS) off the proton: γ∗p → γp . In the low energy domain, this
process gives access to new observables called the Generalized Polarizabilities.
They are fundamental properties of the nucleon, characterizing the deformation
of its internal structure under an applied electromagnetic field. Dedicated ex-
periments have been performed at MAMI, Jefferson Lab and MIT-Bates. This
contribution summarizes the results obtained so far and future prospects in the
field.

1 The Generalized Polarizabilities

The electric and magnetic polarizabilities αE and βM of Real Compton Scat-
tering (RCS) 1 are a measure of the deformation of the nucleon structure under
an applied EM field. The Generalized Polarizabilities (GPs), first introduced
by P.Guichon et al. 2, generalize this concept to the case of an incoming virtual
photon. The GPs measure the electromagnetic deformation locally inside the
nucleon, with a scale given by the virtuality Q2, and they can be seen as “de-
formed form factors”. The full formalism 3,4 leads to six independent GPs at
lowest order, including the electric and magnetic GPs αE(Q2) and βM (Q2) ,
and four spin-flip GPs. The quantities that are determined from an unpolarized
p(e, e′p)γ experiment are two combinations of GPs called the VCS structure
functions PLL − 1

ε PTT and PLT , at a given four-momentum transfer squared
Q2.

1



2 Experiments

Dedicated VCS experiments have been performed at MAMI5 (Q2 = 0.33 GeV2),
JLab 6 (Q2 = 0.92 and 1.76 GeV2) and Bates 7 (Q2 = 0.05 GeV2). They detect
the outgoing electron and proton in magnetic spectrometers and reconstruct the
photon kinematics by the missing-particle technique. These are difficult experi-
ments, requiring performant electron machines (high luminosity and duty cycle)
and high resolution spectrometers. Photon electroproduction cross sections are
small, and background events numerous. The smallness of the “Polarizability
signal” implies an accurate determination of experimental cross sections, via a
careful Monte-Carlo study.

3 Analysis Methods and Results

A first method to analyze the data is to measure the deviation of the p(e, e′p)γ
cross section to the so-called Bethe-Heitler+Born cross section, given by the
low-energy expansion (LEX) 3. This deviation is expressed in terms of the VCS
structure functions, which can then be fitted to the experiment. The method
is valid for kinematics below the pion production threshold (

√
sγp ≤ mN +

mπ). A second method is based on the Dispersion Relation (DR) model of
B.Pasquini et al. 8 and is applicable to kinematics extending in the ∆(1232)
resonance region. The free parameters of the model are fitted to the measured
p(e, e′p)γ cross sections, yielding the value of the electric and magnetic GPs
αE(Q2) and βM (Q2) , as well as the VCS structure functions. The first
method has been applied in the MAMI and JLab experiments. In the JLab
experiment, the resonance region was scanned for the first time in the photon
electroproduction channel, allowing also the application of the second method
to extract polarizabilities.

From the first VCS experiment of MAMI at low Q2, one found that the
Chiral Perturbation Theory to order (p3) 9 agreed well with the measured struc-
ture functions PLL − 1

ε PTT and PLT . Figure 1 gives a representation of the
presently available experimental results. In this figure, the electric and mag-
netic GPs are determined in the framework of the DR model, either by a direct
DR analysis of the data 10, or by a LEX analysis of the data 5,11 followed by
a subtraction of the spin-flip GPs evaluated in the DR model. The curves are
the calculation of this model for two different sets of values of its free param-
eters (Λα, Λβ). The Q2-dependence of the electric GP αE(Q2) appears to
be non-trivial, since there is no unique DR curve going through all the points.
Measurements tend to confirm the extremum of βM (Q2) which is predicted by
most models in the low-Q2 region. This turn-over reflects the competing effects
of para- and dia-magnetism in the magnetic polarizability. The expected Bates
measurement 7 is of great interest in this regard.
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Figure 1: World results on the electric (a) and magnetic (b) Generalized Polarizabilities. The
data points at Q2=0 are from the TAPS experiment 1, the ones at Q2 = 0.33 GeV2 are
from MAMI 5 and the other ones are from the JLab VCS E93-050 experiment including both
analysis methods 11,10 . Some JLab points have been shifted in abscissa for clarity. The curves
are the calculation of the DR model for two different sets of values of its free parameters: Λα=

0.70 GeV, Λβ= 0.63 GeV (solid), Λα= 1.79 GeV, Λβ= 0.51 GeV (dotted).

4 Future prospects and conclusions

Table 1 summarizes the foreseen experiments in the field of VCS at low energy.
Most projects aim at a deeper disentangling of the individual GPs, by polar-
ization measurements or Rosenbluth-type separations. A recent (�ep → epγ)
experiment was performed at MAMI 12 with a polarized beam. It gives access
to the beam spin asymmetry, testing the imaginary part of the VCS amplitude.

Virtual Compton Scattering is an active field of research; Generalized Po-
larizabilities are new observables providing an original way to study nucleon
structure, and there is an ongoing effort to learn more about them both ex-
perimentally and theoretically. Experiments make use of low and high energy
machines, of polarization degrees of freedom, and they exploit the versatility of
methods to extract GPs at low and high Q2. These observables are also predicted
by many theoretical approaches 9,13,14,15,8,16, ..., most calculations being valid
at rather low Q2. In that view the results of the JLab VCS E93-050 experiment
should stimulate new calculations of the GPs at high Q2.
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Table 1: Prospects of VCS at low energies. SSA (DSA) = single (double) spin asymmetry.

type of measure → observables
√

s Q2

experiment (GeV2)

double DSA → separate the six < πN 0.2-0.3
polarization lowest-order GPs
polarized SSA → test Im(VCS) ∆ ≤ 4

beam d5σ → PLL − 1
ε PTT and PLT

unpolarized d5σ → separate PTT < πN 0.2-0.3
(several ε) and PLL
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