641 research outputs found

    A Note on Scheduling Problems with Irregular Starting Time Costs

    Get PDF
    In [9], Maniezzo and Mingozzi study a project scheduling problem with irregular starting time costs. Starting from the assumption that its computational complexity status is open, they develop a branch-and-bound procedure, and identify special cases that are solvable in polynomial time. In this note, we review three previously established, related results which show that the general problem is solvable in polynomial time

    Distance, dissimilarity index, and network community structure

    Full text link
    We address the question of finding the community structure of a complex network. In an earlier effort [H. Zhou, {\em Phys. Rev. E} (2003)], the concept of network random walking is introduced and a distance measure defined. Here we calculate, based on this distance measure, the dissimilarity index between nearest-neighboring vertices of a network and design an algorithm to partition these vertices into communities that are hierarchically organized. Each community is characterized by an upper and a lower dissimilarity threshold. The algorithm is applied to several artificial and real-world networks, and excellent results are obtained. In the case of artificially generated random modular networks, this method outperforms the algorithm based on the concept of edge betweenness centrality. For yeast's protein-protein interaction network, we are able to identify many clusters that have well defined biological functions.Comment: 10 pages, 7 figures, REVTeX4 forma

    Scheduling Scarce Resources in Chemical Engineering

    Get PDF
    The efficient utilization of scarce resources, such as machines or manpower, is major challenge within production planning in the chemical industry. We describe solution methods for a resource-constrained scheduling problem which arises at a production facility at BASF AG in Ludwigshafen. We have developed and implemented two different algorithms to solve this problem, a novel approach which is based upon Lagrangian relaxation, as well as a branch-and-bound procedure. Since the Lagrangian approach is applicable for a whole variety of resource-constrained scheduling problems, it is of interest not only for the specific problem we describe, but is of interest also for many other industrial applications. In this paper, we describe both approaches, and also report on computational results, based upon practical problem instances as well as benchmark test sets

    Network Topology of an Experimental Futures Exchange

    Full text link
    Many systems of different nature exhibit scale free behaviors. Economic systems with power law distribution in the wealth is one of the examples. To better understand the working behind the complexity, we undertook an empirical study measuring the interactions between market participants. A Web server was setup to administer the exchange of futures contracts whose liquidation prices were coupled to event outcomes. After free registration, participants started trading to compete for the money prizes upon maturity of the futures contracts at the end of the experiment. The evolving `cash' flow network was reconstructed from the transactions between players. We show that the network topology is hierarchical, disassortative and scale-free with a power law exponent of 1.02+-0.09 in the degree distribution. The small-world property emerged early in the experiment while the number of participants was still small. We also show power law distributions of the net incomes and inter-transaction time intervals. Big winners and losers are associated with high degree, high betweenness centrality, low clustering coefficient and low degree-correlation. We identify communities in the network as groups of the like-minded. The distribution of the community sizes is shown to be power-law distributed with an exponent of 1.19+-0.16.Comment: 6 pages, 12 figure

    Resource constrained project scheduling with time windows: A branching scheme based on dynamic release dates

    Get PDF
    We propose a branch-and-bound algorithm for resource-constrained project scheduling where any two of jobs can be linked by arbitrary minimal and maximal time lags. The jobs have to be scheduled non-preemptively, and while in process, they require several limited resources. The objective is to find a feasible schedule which minimizes the project makespan. Different branch-and-bound algorithms have been previously proposed - either based on constraint propagation techniques, or based on the idea to branch over so-called resource conflicts which are resolved by introducing additional precedence constraints. Our approach also follows the latter principle. The new idea is to resolve resource conflicts only locally by a dynamic update of job release dates instead of introducing precedence constraints. This gives rise to a reduction of both computation time and memory requirements in every node of the enumeration tree, however, at the expense of a loss of information. Nevertheless, enriched by preprocessing, strong dominance rules, and a flexible search strategy, our computational results show that the algorithm performs better than previous branch-and-bound algorithms, and is competitive with a very recent constraint propagation approach as well as tailor-made heuristics, also for large-scale instances

    A dual function for Pex3p in peroxisome formation and inheritance

    Get PDF
    Saccharomyces cerevisiae Pex3p has been shown to act at the ER during de novo peroxisome formation. However, its steady state is at the peroxisomal membrane, where its role is debated. Here we show that Pex3p has a dual function: one in peroxisome formation and one in peroxisome segregation. We show that the peroxisome retention factor Inp1p interacts physically with Pex3p in vitro and in vivo, and split-GFP analysis shows that the site of interaction is the peroxisomal membrane. Furthermore, we have generated PEX3 alleles that support peroxisome formation but fail to support recruitment of Inp1p to peroxisomes, and as a consequence are affected in peroxisome segregation. We conclude that Pex3p functions as an anchor for Inp1p at the peroxisomal membrane, and that this function is independent of its role at the ER in peroxisome biogenesis
    • 

    corecore