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Abstract The efficient utilization of scarce resources, such as machines or man- 

power, is major challenge within production planning in the chemical industry. 

We describe solution methods for a resource-constrained scheduling problem which 

arises at a production facility at BASF AG in Ludwigshafen. We have developed 

and implemented two different algorithms to solve this problem, an approach which 

is based on Lagrangian relaxation, as well as a branch-and-bound procedure. Par- 

ticularly the Lagrangian approach is applicable for a whole variety of resource- 

constrained scheduling problems, hence it is of interest not only for the specific 

problem we describe, but also for many other industrial applications. In this paper, 

we describe both approaches, and also report on computational results, based upon 

practical problem instances as well as benchmark test sets. 

1 Scheduling under Limited Resources 

Facing the increasing international competition, there is a growing need for 

planning tools in chemical engineering that allow an efficient utilization of 

scarce resources. Within the cooperation with BASF AG, Ludwigshafen, we 

focus on a scheduling problem that is typical for a production process in the 

chemical industry, but also occurs in many other industrial applications. 

The aim is to schedule the production process for several so-called or- 

ders, or campaigns. Each order represents the demand of a certain amount 

of a product, which must be produced on a suited machine. Due to limited 

machine capacities, an order is usually split up into several identical steps, 

so-called jobs. In other words, the production process for each order consists 

of a sequence of identical jobs, each of which must be scheduled on an as- 

signed machine. The objective is to schedule all orders, or jobs, such that 

the overall production time is minimized. Due dates for individual orders are 

given, and there may also be temporal constraints between jobs of different 

orders in the form of time lags, for instance if an intermediate product of an 

order is needed within the production process of others. 

* This work is a final report on a research project with BASF AG, Ludwigshafen. 

The authors have been funded by the Bundesministerium ftir Bildung und 

Forschung (bmb+f) under grant 03-MO7TUI1-3. Most of the results are based 
on joint work with different colleagues, namely Andreas Fest (TU Berlin), An- 
dreas S. Schulz (MIT, Cambridge, MA), and Frederik Stork (TU Berlin).
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Apart from temporal restriction, resource constraints are imposed by lim- 

ited availability of machines and scarce personnel. The availability of person- 

nel depends on the organization of shifts, breaks, etc. Any job itself consists 

of several consecutive steps, so-called tasks, and each of these tasks requires 

a specified amount of personnel. Hence, the required personnel to operate 

a job is varying in time, and given by a corresponding piecewise constant 

function like depicted in Fig. 1. In a less restrictive model, the tasks of a job 

are only linked by so-called time-windows, which means that there may be 

idle periods of restricted time between two consecutive tasks. This leads to a 

model with so-called maximal time lags, which will be discussed in Sect. 6. 
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Figurel. Resource requirement of a sample job which consists of 6 tasks. Each 

colored rectangle corresponds to a task. The higher (darker) the rectangle, the 

more resources are required during the execution of the corresponding task. 

The objective is to find a production schedule such that temporal as well 

as resource constraints are satisfied, and the overall production time, the so- 

called makespan, is minimized. For a more detailed problem description, we 

refer to [KW] or [MSSU3]. 

1.1 Notation and Formulation of the Problem 

The problem described above can be formulated as a resource-constrained 

project scheduling problem. In order to put up a mathematical formulation, 

we introduce some notation. Let us denote by J = {0,...,n} be the set of 

all jobs which have to be scheduled, where a job 7 has an integral processing 

time p;. Except for Sect.6, we assume that jobs must be processed without 

interruption, and by S = (So,...,5,) we denote a schedule, where S; is 

the start time of job 7. The entity of all jobs, together with their temporal 

constraints and resource requirements will be called a project in what follows. 
Jobs 0 and n are assumed to be dummy jobs with processing time 0, indicating 

the project start and the project completion, respectively. In other words, job 

n indicates when the production of all orders terminates. This can be easily 

modeled by introducing additional temporal constraints. In general, temporal 

constraints are given in the form of arbitrary minimal time lags between any 

pair of jobs, and by d;; > 0 we denote the length of the required time lag
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(i, 7) between two jobs i,j € J. LC J x J is the set of all time lags, and by 

m := |L| we denote the number of given time lags. We assume without loss of 
generality that the time lags always refer to the start times of jobs, thus every 

schedule S has to fulfill S$; > S; + dj; for all (i,j) € L. Ordinary precedence 
constraints can be represented by letting dj; = p; if job 1 must precede job j. 

Additionally, we suppose that a time horizon T as an upper bound on the 

project makespan (the time to produce all orders) is given. It can be checked 

in polynomial time by longest path calculations if such a system of temporal 

constraints has a feasible solution. 

As indicated before, jobs need resources while they are operated. We 

assume that we are given a finite set R of different, so-called renewable re- 

sources, and the availability of resource k € R at time ¢ is denoted by Rye. 

These resources can represent machines, manpower, or any other device which 

is required to operate a job. We assume that a job 7 requires an amount of 

jee units of resource k, k € R, during the ¢-th period of its execution. Note 

that a job may require several resources at the same time. 

The objective is to find a schedule which respects all constraints, and 

has minimal total processing time, or in other words, which minimizes the 

project makespan S,,. It is well known that this problem is NP-hard. It is 

even NP-hard to approximate within any constant factor (see [Sch]). That 
means that there is virtually no hope to find an efficient, that is, polynomial 

time algorithm which computes an optimum or near-optimum solution for all 

problem instances. 

1.2 Integer Programming Formulation 

In order to model the problem mathematically as an integer linear program, 

so-called time-indexed formulations are quite common. Pritsker, Watters, and 

Wolfe [PWW] were presumably the first to give an integer programming 
formulation in time-indexed 0-1-variables of the type 

tn = 1 if job j starts at time ¢, 

I 0 otherwise, 

where j € J, andt € {0,...,7}. we then obtain the following integer linear 

programming formulation, which is crucial for our subsequent approach 

minimize S- tlnt (1) 
t 

subject to So xy =1, géeJ, (2) 
t 

T t+d;j;—-1 

S- tis + S- Lig <1, (i,j) €L, t=0,...,T, (3)
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t 
S- S- Tjk,t—s Lis < Rr, ke R, t= 0, yD, (4) 

j s=t—pj;+1 

ajt > 0, jeJ,t=0,...,T, (5) 
Xj integer, jeJ,t=0,...,T. (6) 

Note that S; = >¢,txj, thus the objective (1) is to minimize the project 
completion time S,,. Constraints (2) indicate that each job is started exactly 

once, and inequalities (3) represent the temporal constraints given by the 

time lags L. Inequalities (4) assure that the jobs simultaneously processed 

at time t do not consume more resources than available. Given the temporal 

constraints and the time horizon T’, it is easy to compute earliest and latest 

starting times for each job j € J. For convenience of notation, however, we 

simply assume (without stating explicitly) that variables with time indices 

outside these boundaries are fixed at values zero, such that no job is started 

before its earliest start or after its latest start, respectively. 

2 Relaxations and Lower Bounds 

Recall that we are dealing with a minimization problem which is even N P- 

hard to approximate within any constant factor. Hence, we cannot expect to 

find an efficient algorithm which computes a provably good solution for any 

given problem instance. Is such a situation, heuristic solutions are usually 

sought. However, in order to judge the quality of a given solution, lower 

bounds on the optimal objective value are crucial. In order to compute lower 

bounds, a variety of different methods are available. Usually, one tries to solve 

relaxations of the problem, preferably in such a way that the relaxed problem 

is solvable efficiently, that is, in polynomial time. 

Based upon the above integer programming relaxation, it can be shown 

that a Lagrangian relaxation of the problem can be reduced to a minimum- 

cut problem, and thus can be solved quite efficiently [MSSU3]. The idea is to 

dualize the resource constraints (4), and introduce nonnegative Lagrangian 

multipliers X = (Am), k € R, t € {0,...,T}. Doing this, one obtains the 

Lagrangian subproblem 

t+pj—-1 

minimize S°t¢p+ >> »( Ss > Pike tAke ) Bjt —> Dd Ace Ree (7) 
t j t ‘kER sat t kER 

subject to (2), (3), (5), and (6). 

It is well known that for any set of nonnegative Lagrangian multipliers, the 

optimum solution of the Lagrangian subproblem is a lower bound on the 

optimum objective value of problem (1)— (6). Already Christofides, Alvarez- 
Valdes, and Tamarit [CAT] have proposed to use this Lagrangian relaxation, 

however, they solved the Lagrangian subproblems by branch-and-bound. If
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one omits the constant term ys ene pAkt Ree and introduces weights 

t+pj—1 

Tiks—trAks if 7 An, 
Wit = ) KER 4 Bhs tOS (8) 

t if j =n, 

problem (7) can be rewritten as 

minimize c)(#) := S- wy. 2je subject to (2), (3), (5), and (6). (9) 
j t 

Formulation (9) specifies the problem of finding a minimum-cost schedule for 

a set of jobs which must respect a set of temporal constraints, and where 

each job j € J incurs a cost of w,, if it is started at time ¢. We refer to this 

problem as project scheduling problem with start-time dependent costs. It will 

be discussed in Sect. 3 below. 

3 Scheduling with Start-Time Dependent Costs 

Not only due the fact that is arises as Lagrangian subproblem for various 

resource-constrained scheduling problems, the scheduling problem with start- 

time dependent costs as formulated in (9) is of interest in its own. For in- 
stance, it generalizes the well-known net-present-value problem [Rus] to ar- 
bitrary costs wj. In the paper by Christofides et al. [CAT], this problem is 

solved by a branch-and-bound algorithm. 

However, it is in fact solvable in polynomial time, which follows, among 

others, from results by Chang and Edmonds [CE]. In [MSSU2], we have given 
an overview of the corresponding results. We next describe a direct reduction 

of the scheduling problem with start-time dependent costs given in (9) to 

a minimum-cut problem in a directed graph. This is a crucial result with 

respect to the efficiency of the Lagrangian approach, and we refer to [MSSU2] 

and [MSSU3] for more details. 
Define a digraph D by introducing a vertex uj; for every job j € J and 

every t = 0,...,7' +1. Now, define directed chains (ujo, uj1), (uj1, Uj2),---; 
(uj, Uj,741) for any j. The corresponding arcs (ujz, Uj,441) are called assign- 
ment arcs. Furthermore, define arcs between those chains which correspond 

to the given temporal constraints by (wiz, Uj,t+4; A) for all temporal constraints 

(i,j) € L. The cost coefficients wj, are interpreted as the arc capacities of 

arc (uj, Uj,¢41), for all j and t. The capacity of the remaining arcs is set 

to infinity. Then, after the introduction of a dummy source a and sink b, a 

solution of the original scheduling problem can be computed as a minimum 

a-b-cut in that digraph. Fig. 2 gives an example for the construction of D.
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Theorem 1 ([MSSU3]). A minimum a-b-cut (X,X) of the digraph D de- 
scribed above corresponds to an optimal solution of the project scheduling 

problem with start time dependent costs (9) by virtue of 

«fl if (uj, uze41) is @ forward are of the cut (X,X), (10) 

“it 10 otherwise. 

Moreover, the value c)(x) of that solution equals the capacity c(X, X) of any 

minimum cut (X,X) of D. 

Using a push-relabel maximum-flow algorithm [GT], this results in an algo- 

rithm for solving the project scheduling problem with start-time dependent 

costs with running time O(nmT? log(n?T'/m) ). Note that this holds for 
arbitrary (also maximal) time lags. 
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Figure2. The left digraph represents the data of the sample instance: Each vertex 

represents an job, each arc represents a temporal constraint. The values for the 

time lags are diz = 1,d23 = —2,d34 = 2, and ds4 = 3. The job processing times are 

pi = pa = 1, po = ps = 2, and p3 = 3. T = 6 is a given upper bound on the project 

makespan. The right digraph D is obtained by the above transformation. Each 

assignment arc (ujz, Uj,4+1) Corresponds to a binary variable x; of formulation (9). 

4 Linear Programming or Lagrangian Relaxation? 

Based on this insight, the computation of lower bounds via Lagrangian re- 

laxation can be realized quite efficiently: Using a standard subgradient opti- 

mization procedure to compute a near-optimal set of Lagrangian multipliers, 

the computation of lower bounds reduces to a series of minimum-cut com- 

putations in the above defined digraph. In fact it is well known that, since 

the polytope defined by inequalities (2), (3), and (5) is integral, the optimum 
solution value of the Lagrangian dual 

Ca* := SUPADOC) ,
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equals the value of an optimal solution of the linear programming relaxation 

(1) — (5). Here, c, denotes the value of an optimum solution of (9) for a fixed 
value of Lagrangian multipliers \ = (An), KE R, t =0,...,T. 

The benefit of the new insights described in the preceding section is per- 

haps best documented by the comparison of the corresponding computation 

times in Tab. 1. There, we compare the computation times when solving lin- 

ear programming relaxation (1) — (5) to the computation times to solve the 
Lagrangian multiplier problem as described above. The figures in Tab. 1 are 

based upon the well-established ProGen benchmark instances for resource 

constrained project scheduling [KS]. We used 600 ProGen instances, each 

with 120 jobs. The instances are available under [Prol]. The table shows 

computation times as well as the average quality of the lower bounds in 

terms of improvement over the so-called critical path lower bound, which is 

the length of a longest path in the project network. 

Table1. Comparison of computation times to solve the linear programming (LP) 
relaxation (1) — (5) and the multiplier problem for the Lagrangian relaxation (LR). 
Computation times were obtained on a Sun Ultra 2 with 200MHz, operating under 

Solaris. The linear programs have been solved with CPLEX version 6.5.3. 

Algorithm Average CPU Above Crit. Path 

LP 38 min. (max. 23 h) 20.5% 
LR 37 sec. (max. 8 min.) 19.6% 

Obviously, the computation times are drastically reduced when using the 

Lagrangian approach instead of solving the linear programming relaxation. 

The average computation times for the Lagrangian approach are based upon 

an average number of 70 iterations. The quality of the corresponding lower 

bounds deviate only marginally, due to the fact that the subgradient opti- 

mization is not exact, but rather converges to the optimum value cy. 

5 From Minimum Cuts to Feasible Solutions 

Let us now turn to the question of how to obtain feasible solutions for the 

scheduling problem at BASF AG. So far, we have computed a lower bound 

on the best possible solution as described before. In fact, we not only have 

computed a lower bound, but in every iteration of the above described sub- 

gradient procedure, we have computed a schedule which respects all temporal 

restrictions, but might be infeasible with respect to the resource constraints. 

The intuition behind our approach to obtain good feasible solutions is to 

exploit some of the information held in these resource-infeasible schedules.
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The simple idea is to use list scheduling algorithms which are based upon 

so-called a-completion times of the jobs. 

Such relaxation-based ordering heuristics, combined with a-completion 

time variables, have been used previously to obtain worst case performance 

bounds for certain machine scheduling problems. The papers [PSW] and 

[HSW] are two of the early references in this direction. An application of linear 
programming based approaches to resource-constrained scheduling problems 

has been previously analyzed in [CDS*] and [SUW]. 
Let us now briefly sketch the framework for a combined algorithm which 

computes both, lower bounds and feasible solutions. First, to obtain an initial 

valid upper bound to start with, we use list scheduling algorithms fed with 

some standard priority rules. (Remember that we use a time-indexed formula- 

tion and require a time horizon T’..) Then, in each iteration of the subgradient 

optimization algorithm, a time-feasible (but likely resource-infeasible) sched- 

ule is computed by solving the Lagrangian subproblem (9) as described in 

Sect. 3. The cost of this time-feasible schedule, in terms of the w;, defined in 
(8), is now a valid lower bound for the original problem (1)— (6). Using order- 
ings according to a-completion times of jobs, we then compute feasible solu- 

tions by means of different list scheduling algorithms, schematically depicted 

in Fig. 3. In fact, we have developed new list scheduling algorithms which 

showed to be particularly suited for our approach. See [SU] and [MSSU3] for 
more details. 

Gantt Chen 
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Figure3. Computing feasible solutions by relaxation-based ordering heuristics. In- 

formation is extracted from the resource-infeasible solution of the Lagrangian re- 

laxation (left picture), and used as input for List-Scheduling heuristics. 

With this Lagrangian approach, we could solve a practical instance pro- 

vided by BASF AG to optimality within a couple of seconds by computing 

matching lower and upper bounds. The instance originally consists of 21 or- 

ders which are split up into 2121 jobs, resulting in a total number of 4545 

tasks. The resulting number of time lags is 2100. Although this is a very
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large problem instance, it turned out to be comparatively easy to solve, since 

a simple preprocessing reduces its size to 129 jobs and 557 tasks. 

Also on the well established ProGen benchmark instances [KS], the per- 
formance of the Lagrangian approach was very encouraging. In fact, the 

solutions compare to results obtained with state-of-the-art local search al- 

gorithms. The figures in Tab.2 are again averaged over 600 ProGen in- 

Table2. Deviation of lower bounds and feasible solutions from best known lower 

and upper bounds. Computation times were obtained on a Sun Ultra 2 with 

200MHz, operating under Solaris. 

Average Deviations in % 
CPU best known lower bound best known solution 

88 sec. (max. 11 min.) 2.7 (max. 23.0) 2.1 (max. 9.3) 

stances [KS], each with 120 jobs. The values for best known lower bounds and 
feasible solutions for these problem instances are maintained and available 

at [Prol]. As Tab. 2 suggests, the average deviations from both best known 

lower bounds and feasible solutions are below 3%, at an average computation 

time of 88 seconds per instance. Note that the best known solutions have 

been obtained by various researchers using different local-search, as well as 

branch-and-bound algorithms over the years, thus computation times cannot 

be given. The best known lower bounds are due to Brucker and Knust [BK]. 

They, however, require up to 72 h computation time per problem instance, 

whereas the Lagrangian approach only requires a maximum computation 

time of 11 minutes. In view of these figures, the Lagrangian approach seems 

to offer an excellent tradeoff between the quality of the bounds and the com- 

putational effort to get them. 

Additionally, we have tested the algorithm using a benchmark set of 25 

instances of the BASF-type which are available at [Cav]. These instances are 
known to be notoriously difficult. Tab. 3 shows the results obtained with four 

of these sample instances of different size. The Table shows the number of jobs 

and tasks as well as the critical path lower bound. T denotes the time hori- 

zon, and #it is the number of iterations in the subgradient optimization. The 

columns LB and UB show the lower and upper bounds obtained with the La- 

grangian approach described above. Although the Lagrangian approach was 

not able to close the still existing gaps, are the results encouraging. Given 

that the computation time to solve linear programming relaxations is usu- 

ally prohibitive for large instances, the computation times shown in Tab. 3 

can still be ranked as moderate. (We refer to the comparison of computation 

times in Tab. 1, and also to [CDS*], who could solve only small problem in- 

stances due to enormous computation times.) Moreover, the feasible solutions
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Table3. Results for sample instances of BASF-type with one resource type (man- 

power) and variable resource requirements of jobs (see Fig. 1). Computation times 
have been obtained on a Sun Ultra 10 with 330 MHz, operating under Solaris. 

Instance #jobs #tasks crit.path T LB UB CPU #it 

40_24j_B_18 24 109 54 75 55 72 I1sec. 81 

60_44j_A_18 44 224 75 128 88 121 6sec. 169 

100_87j-A_18 87 1001 194 633 412 595 8 min. 198 
100.106j-A_18 106 1653 383 1224 748 1126 33 min. 239 

given in Tab.3 improve upon results obtained with constraint propagation 

by Heipcke [Hei], and compare to results with a tabu search algorithm by 

Cavalcante and de Souza [CD,CDS*]. It is worth to note, however, that in 
comparison to tabu search, the Lagrangian approach provides both a lower 

bound and a feasible solution at the same time. 

6 Time-Critical Tasks and Maximal Time Lags 

Until now, we have assumed that the temporal restrictions are given by ar- 

bitrary minimal time lags dj; > 0 between any two jobs ¢ and j, and the 

sequence of tasks of a job had to be processed without interruption. An addi- 

tional feature which would be ‘nice to have’ in some practical applications is 

the possibility of modeling also mazimal time distances between certain jobs 

or tasks. The motivation is that the execution of certain tasks may be post- 

poned in time, but must not be postponed too much, for instance because the 

temperature must not fall below a certain threshold. Such constraints can be 

easily anticipated by introducing negative time lags between jobs, or tasks, 

where a time lag dj; < 0 now implies a maximal time lag of 5; relative to 5j. 

Hence, so-called time windows of the form 5; + dij < Sj; < S;— dj; between 

any two jobs (or tasks) can be modeled. 
Unfortunately, this has the effect that the problem of finding a feasible 

solution already is NP-complete (see, e.g., [BMR]). Although the compu- 

tation of lower bounds via Lagrangian relaxation as described in Sections 2 

and 3 remains valid also if maximal time lags are present, the approach de- 

scribed in Sect.5 to compute feasible solutions can no longer be applied. 

This is due to the fact that this approach is based upon list-scheduling al- 

gorithms which generally fail to find feasible solutions if maximal time lags 

exist. Hence, we have implemented a branch-and-bound algorithm for this 

problem (see [FMSU]). The underlying idea is that the problem is easy solv- 
able via longest path calculations if resource-constraints are absent. Thus, the 

resource-constraints are relaxed, and within an enumeration tree so-called re- 

source conflicts are resolved by introducing additional temporal restrictions. 

A resource conflict is a time interval where a schedule consumes more re-
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sources than available, thus violating inequalities (4). In contrast to previous 

approaches by Bartusch, Méhring, and Radermacher [BMR], de Reyck and 

Herroelen [dRH], or Schwindt [Sch2], we implemented a branch-and-bound 
algorithm which uses earliest start times (or release dates) to resolve a re- 

source conflict. This has the effect that the necessary computations in every 

node of the enumeration tree can be realized very efficiently. We do not go 

into details here, but refer to [FMSU]. 
Also with this branch-and-bound algorithm, we could optimally solve the 

above described instance provided by BASF AG within less than a minute 

computation time. Applied to the notoriously difficult benchmark instances 

from [Cav], we could solve to optimality most of the smaller instances, how- 

ever, for large instances the results with the Lagrangian approach were much 

better. (Note that these instances do not involve maximal time lags.) 

Additionally, we tested this algorithm using a benchmark set of 1080 

instances which involve also maximal time lags. The instances have been 

generated by Schwindt [Sch1], and consist of 100 jobs each. Tab. 4 compares 

Table4. Comparison of the performance of branch-and-bound algorithm [FMSU] 
with previous branch-and-bound algorithms, based upon 1059 ProGen/max in- 

stances [Sch1]. Computations for [FMSU] have been obtained on a Sun Ultra 2 
with 200 MHz, operating under Solaris. Computations for [RH] and [Sch2], how- 
ever, have been conducted in a different environment. 

Algorithm Time limit Optimized Feasible Av. Dev. 

De Reyck, Herroelen [dRH] 30 s* 57.5% 93.6%  10.0%** 
Schwindt [Sch2] 30s 63.7% 100% 7.0% 

100 s 64.7% 100% 6.9% 

Fest, Mohring, Stork, Uetz [FMSU] 30s 70.6% 100% 7.8% 
100 s 72.8% 100% 6.8% 

“Corresponds to 100s on a 60MHz personal computer. 

** Average deviation based upon different lower bounds. 

the results of our implementation with previous branch-and-bound algorithms 

which also follow the paradigm to resolve resource conflicts. All algorithms 

have been run for a certain time limit (30 and 100 sec., respectively), for 

each of the 1080 instances. The figures refer to 1059 instances only, since the 

remaining 21 do not have a feasible solution. The table shows the number of 

instances that could be solved to optimality, as well as the number of instances 

where a feasible solution could be found within the given time limit. The last 

column shows the total average deviation from lower bounds, based upon a 

benchmark set of lower bounds obtained from [Pro2]. In terms of the average 
deviation, the results we obtained in [FMSU] could be further improved using 
constraint propagation by Dorndorf, Pesch, and Phan Huy in [DPP].
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Concerning lower bounds for the ProGen/max instances, it is worth to 
mention that the Lagrangian approach could improve upon the best known 

lower bounds for 91 instances. We refer to [MSSU3] for more details. 

7 Final Remarks and Outlook 

We have implemented and tested two different approaches to solve resource- 

constrained scheduling problems which arise in a typical production process 

at BASG AG, Ludwigshafen. On the one hand, this is a Lagrangian approach 

which is suited for a whole variety of different resource-constrained scheduling 

problems, and hence is of practical interest not only within chemical engineer- 

ing. On the other hand, this is a branch-and-bound algorithm which handles 

also arbitrary maximal time lags, or so-called time windows between jobs (or 

tasks). Computational experiments with practical instances from BASF AG 

as well as benchmark test sets were quite successful with both algorithms. 
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Figure4. Screen-shot of the user interface (based on instance 100_87j_A; see Tab. 3). 
Jobs are red rectangles on the time axis, and the blue bottom line visualizes resource 

utilization, where dark blue indicates heavy utilization. The two curves show the 

lower and upper bound improvements during the course of the algorithm. 

Apart from the algorithmic side, we have also implemented a user inter- 

face which allows to display both solutions as well as problem instances, and
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which enables the user to manipulate the problem instances on-line. Fig. 4 

shows a screen-shot of the schedule visualization. In the meantime, several 

software companies indicated their interest to integrate the Lagrangian-based 

algorithm into their products, and on the account of the present project a 

cooperation on a related topic was established with ATOSS Software AG. 
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