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Abstract

Maniezzo and Mingozzi (Oper. Res. Lett. 25 (1999) 175–182) study a project scheduling problem with irregular starting
time costs. Starting from the assumption that its computational complexity status is open, they develop a branch-and-bound
procedure and they identify special cases that are solvable in polynomial time. In this note, we present a collection of
previously established results which show that the general problem is solvable in polynomial time. This collection may serve
as a useful guide to the literature, since this polynomial-time solvability has been rediscovered in di7erent contexts or using
di7erent methods. In addition, we brie8y review some related results for specializations and generalizations of the problem.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Maniezzo and Mingozzi [21] consider the prob-
lem of @nding a minimum-cost schedule for a set
V = {1; : : : ; n} of precedence-constrained jobs which
have starting time dependent costs. A schedule must
respect the given precedence constraints, and each
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job j∈V incurs a cost of wj(t) if it is started at
time t. Here, t ∈ I := {0; 1; : : : ; T}, and T denotes the
planning horizon. Since no restrictions are imposed
on the cost functions wj(t), the objective function∑

j∈V
∑

t∈I wj(t) generalizes many popular (regular
and irregular) objective functions. One example is the
maximization of the net present value (e.g. in [32]),
where a cash 8ow of wj is associated with every
job, � is an interest rate, and wj(t) = − wj exp(−�t).
Another important special case is given by linear
earliness-tardiness costs, or more general, by (piece-
wise linear) convex cost functions wj(t). The problem
with arbitrary cost functions wj(t) owes its signi@-
cance to a good part to its appearance as a subproblem
in the computation of bounds on the objective func-
tion value for di7erent resource-constrained project
scheduling problems, e.g. in [7,9,17,20,24,31,33].
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In [21], Maniezzo and Mingozzi suggest that the
computational complexity status of this problem is
open. On this account, they show that the follow-
ing two special cases can be solved in polynomial
time: cost functions wj(t) which are monotonous
in t, and precedence constraints in the form of an
out-tree. The case with monotonous cost functions is
obviously solvable through longest path calculations.
Maniezzo and Mingozzi propose a dynamic program-
ming algorithm of running time O(nT ) for the case
of out-tree precedence constraints. In addition, fol-
lowing earlier work by Christo@des et al. [7] on the
same problem, they develop a lower bound as well as
a branch-and-bound procedure for the general case.
Maniezzo and Mingozzi’s lower bound is obtained
by extracting an out-tree from the given precedence
constraints, and by penalizing the violation of the
neglected constraints in a Lagrangian fashion.

In this note, we give a historical synopsis of previ-
ously established results which show that the general
problem considered in [7,21] is solvable in polyno-
mial time, and we point out inter-relations between
them. We found proofs implying this result (for vary-
ing levels of generality) in [3–5,8,14,17,22,24,31,33].
Most of them have co-existed in the literature, appar-
ently without anyone making the connection. We hope
that this note will help to establish this connection.
It is organized according to the di7erent techniques
that have been used. First, the integrality of the linear
programming relaxations of two popular integer pro-
gramming formulations implies that a more general
problem can be solved in polynomial time, namely
with temporal constraints in the form of arbitrary (i.e.,
positive and negative) time lags. These results will be
summarized in Sections 2.1 and 2.2. In Section 2.3,
we then report on di7erent reductions to minimum
cut problems which result in algorithms with running
time O(nmT 2 log(n2T=m)), for the generalized prob-
lem. Here, m is the number of temporal constraints.

2. Solution techniques

We @rst introduce some additional notation. A tem-
poral constraint between two jobs i and j is an in-
equality of the form Sj¿ Si + dij. Here, Sj and Si de-
note the starting times of jobs j and i, respectively,
and the integer number dij, −∞6dij ¡∞, imposes

a time lag between them. Note that ordinary prece-
dence constraints arise as the special case Sj¿ Si+pi,
where pi¿ 0 denotes the processing time of job i.
We assume throughout that the given temporal con-
straints are consistent, i.e., the digraphG= (V; A) with
A= {(i; j)|dij ¿ − ∞} and arc lengths dij does not
contain a directed cycle of positive length. Given the
temporal constraints and the time horizon T , it is easy
to compute earliest possible and latest possible start-
ing times for each job j∈V . For convenience of nota-
tion, however, we simply assume throughout the text
that variables with time indices outside these bound-
aries are @xed at values which ensure that no job is
started at an infeasible time.

2.1. Integer programming formulation I

The following integer program represents one
formulation of the project scheduling problem with
irregular starting time costs. We use binary variables
zjt ; j∈V; t ∈ I = {0; 1; : : : ; T}, with the intended
meaning that zjt = 1 if job j is started by time t and
zjt = 0, otherwise. To the best of the authors’ knowl-
edge, this type of variables for modeling scheduling
problems was originally introduced by Pritsker and
Watters [28]. Using these variables, the problem reads
as follows.

min
∑

j

∑

t

Nwj(t)zjt (1)

s:t: zjT = 1; j∈V; (2)

zjt − zj; t+16 0; j∈V; t ∈ I; (3)

zj; t+dij − zit6 0; (i; j)∈A; t ∈ I; (4)

zjt¿ 0; j∈V; t ∈ I; (5)

zjt integer; j∈V; t ∈ I: (6)

Here, Nwj(t) := wj(t) − wj(t + 1) for all j∈V and
t ∈ I , where wj(T + 1) := 0. Gr&o8in et al. observed
in the context of their work on pipeline scheduling
with out-tree precedence constraints [14] that the con-
straint matrix of (3)–(4) is the arc-node incidence
matrix of a digraph. In particular, it is totally uni-
modular. This implies that the linear programming re-
laxation of the above integer program is integral (as
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was also observed in [3,8,17,22,31,33] in various con-
texts). Hence, the scheduling problem is solvable in
polynomial time. Moreover, the dual linear program
to (1)–(5) can be solved as a minimum-cost 8ow
problem [14,17,31,33]. In fact, Gr&o8in et al. [14] pre-
sented a network 8ow type algorithm that solves the
pipeline scheduling problem with out-tree precedence
constraints in O(nT ) time. Their pipeline scheduling
problem can be interpreted as follows: It is a schedul-
ing problem with irregular starting time costs, zero
time lags (dij = 0) which form an out-tree and (2) is
relaxed to zjt6 1 for all j∈V and t ∈ I (i.e., jobs may
not be scheduled at all). With minor modi@cations,
however, their algorithm also applies to the problem
with constraints (2), arbitrary dij, and out-tree prece-
dence constraints. A di7erent algorithm was proposed
by Roundy et al. [31] for the case where the prece-
dence constraints consist of independent chains. This
special case arises from a Lagrangian relaxation of the
job-shop scheduling problem.

2.2. Integer programming formulation II

Pritsker et al. [29] were likely the @rst to use vari-
ables xjt (j∈V; t ∈ I), where xjt = 1 if job j is started
at time t and xjt = 0, otherwise. The problem now
reads as follows.

min
∑

j

∑

t

wj(t) xjt (7)

s:t:
∑

t

xjt = 1; j∈V; (8)

T∑

s=t

xis +
t+dij−1∑

s=0

xjs6 1; (i; j)∈A; t ∈ I; (9)

xjt¿ 0; j∈V; t ∈ I; (10)

xjt integer; j∈V; t ∈ I: (11)

Chaudhuri et al. [5] showed that the linear program-
ming relaxation of this integer programming formula-
tion is integral as well. For this, they made use of the
following graph-theoretic interpretation of the prob-
lem: Identify with every job–time pair (j; t) a node vjt
in an undirected graph. There are two di7erent types
of edges. First, all pairs of nodes which belong to
the same job are connected. Second, for each tempo-
ral constraint Sj¿ Si + dij and each time t, there are
edges between vit and all nodes vjs with s¡ t+dij. In

the resulting graph, any stable set (a set of pairwise
non-adjacent nodes) of cardinality n corresponds to a
feasible solution of the original scheduling problem:
Job j is started at time t if node vjt belongs to the stable
set. Consequently, if we assign the cost coeOcients
wj(t) as weights to the nodes vjt , a minimum-weight
stable set of cardinality n yields an optimum schedule.
If we assume that dik¿dij+djk , this graph can easily
be transitively oriented. It therefore is a comparability
graph and its corresponding fractional stable set poly-
tope is integral (see, e.g., [15, Chapter 9]). Since the
inequalities (8)–(10) de@ne a face of the fractional
stable set polytope, it follows that LP relaxation (7)–
(10) is integral as well.

The integrality of LP relaxation (7)–(10) can al-
ternatively be proved from the integrality of LP re-
laxation (1)–(5) by a linear transformation between
the z- and the x-variables which preserves integrality.
This was pointed out in [3,8,22,33].

Maniezzo and Mingozzi also consider an integer
programming formulation in x-variables. Instead of
using (9), they model temporal constraints in the way
originally suggested by Pritsker et al. [29]:
∑

t

t(xjt − xit)¿dij; (i; j)∈A: (12)

Note that the LP relaxation (7), (8), (10), and (12) is
weaker than (7)–(10); in particular, it is not integral in
general. We refer to [33] for a simple counter-example
with ordinary precedence constraints.

2.3. Reduction to a minimum cut problem

A direct transformation of the project scheduling
problem with irregular starting time costs to a mini-
mum cut problem was given by Chang and Edmonds
[4], and also in [24]. Although Chang and Edmonds
restricted themselves to the case of precedence con-
straints and unit processing times (that is, dij = 1 for
all (i; j)∈A), the transformation works for the general
case. Their approach relies in fact on a transformation
of the scheduling problem to the so-called minimum
weight closure problem, which is well-known to be
equivalent to the minimum cut problem [2,4,27,30].
Incidentally, Gr&o8in et al. also observed that the
pipeline scheduling problem they studied in [14] is
an instance of the minimum weight closure problem.
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The minimum weight closure problem in a
node-weighted digraph is the problem to @nd a subset
C of nodes of minimum weight such that any arc
(u; v) with u∈C implies v∈C. With binary variables
zu, we obtain the following integer programming
formulation.

min
∑

u

wuzu

s:t: zu − zv6 0 for all arcs (u; v);

zu ∈{0; 1} for all nodes u:

In this way, the connection to the integer program-
ming formulation discussed in Section 2.1 becomes
apparent. It was also noticed in this context that the
constraint matrix is totally unimodular (e.g. [30]).

The digraph constructed by Chang and Edmonds
[4] is in fact the one induced by the arc-node inci-
dence matrix de@ned by constraints (3) and (4) of
the z-formulation in Section 2.1. In other words, ev-
ery job-time pair (j; t) corresponds to a node vjt , and
there are two di7erent types of arcs. On the one hand,
there is an arc (vjt ; vj; t+1) for every job j and every
point t in time. On the other hand, every temporal
constraint (i; j)∈A gives rise to arcs (vj; t+dij ; vit),
for all t. Finally, every vertex vjt is assigned the
weight Nwj(t). The scheduling problem is equivalent
to @nding, in this digraph, a minimum-weight closure
that contains the set B := {(j; T ) : j∈V}. The latter
constraint is easily enforced without changing the
nature of the minimum weight closure problem as
de@ned above; see [4] for a discussion. Therefore, the
scheduling problem can be reduced to a minimum cut
problem. IfM (�; �) is the running time for computing
a minimum cut in a digraph with O(�) nodes and O(�)
arcs, this transformation results in an algorithm which
solves the project scheduling problem with irregular
starting time costs and arbitrary time lags in time
M (nT; (n + m)T ). (Recall that m= |A| is the num-
ber of given temporal constraints, and n= |V | is the
number of jobs.) Using a push-relabel maximum 8ow
algorithm [13], this yields an actual running time of
O(nmT 2 log(n2T=m)). If all weights wj(t) are integer
andW is the largest absolute value among them, Gold-
berg and Rao’s algorithm [12] leads to a running time
of O(min{n2=3mT 5=3; m3=2T 3=2} log(n2T=m) logW ).

The transformation in [24] was derived in the con-
text of Lagrangian relaxation for resource-constrained

project scheduling. It leads to a di7erent, sparser
minimum-cut digraph than the one obtained via the
above described reduction to the minimum weight
closure problem. It results in the same asymptotic
time complexity, though.

Chang and Edmonds [4] additionally showed that
every instance of the minimum cut problem can be re-
duced to an instance of the project scheduling problem
with ordinary precedence constraints, unit processing
times, and irregular starting time costs. (The reduction
yields a scheduling problem with time horizon T = 2.)
Hence, all three problems (project scheduling with ir-
regular starting time costs discussed herein, minimum
weight closure and minimum cut) are in fact equiva-
lent.

3. Related topics

We emphasize that the polynomiality results dis-
cussed in Section 2 of this note refer to instances of
the scheduling problem which require an encoding
length of  (nT ). This is clearly the case for prob-
lems with general cost functions wj(t). However, this
does not imply polynomial-time algorithms for prob-
lems which allow a more succinct encoding. To give
an example, consider piecewise linear, convex cost
functions wj(t), an important special case of which
are linear earliness-tardiness costs. Instances from
the latter class are used by Maniezzo and Mingozzi
[21], among others, to evaluate the behavior of their
branch-and-bound algorithm. There are algorithms to
solve the scheduling problem with piecewise linear,
convex cost functions in time polynomial in n and the
number of breakpoints. Indeed, because the project
scheduling problem with linear cost functions wj · t
can be solved as a linear program in starting time
variables Sj, it follows from linear programming the-
ory that the problem with piecewise linear, convex
cost functions can be solved as a linear program as
well, see, e.g., [25, Chapter 1] for details. This was,
for instance, pointed out by Faaland and Schmitt [10]
who also gave a combinatorial algorithm. Similar
algorithms have recently been proposed in [6,16].
On the other hand, the problem with piecewise lin-
ear, convex cost functions may also be seen as a
special case of a convex cost integer dual network
8ow problem. This was observed by Wennink [34]
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in the context of job-shop scheduling problems and
was exploited in full generality by Karzanov and Mc-
Cormick [18] and Ahuja et al. [1], among others. In
the convex cost integer dual network 8ow problem,
the time lags dij are considered as variables with as-
sociated convex cost functions as well. According to
[1], this generalized problem can be solved in time
O(nm log(n2=m) log(nT )) by an adaption of the cost
scaling algorithm for minimum cost 8ows.

It is gratifying to conclude this brief summary by
mentioning that in 1961 Fulkerson [11] and Kel-
ley [19] proposed network 8ow type methods to
solve certain problems on project networks. In the
time-cost tradeo7 problem, (linear) cost functions are
associated with the variables dij only. Fulkerson and
Kelley computed the project cost curve through para-
metric solution of a minimum cost 8ow problem
obtained as a dual of the linear programming for-
mulation of the problem. Phillips and Dessouky [26]
subsequently showed that the problem may be solved
as a sequence of minimum cut problems.
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