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Summary. The achievable region approach seeks solutions to stochastic optimization problems by
characterizing the space of all possible performances (the achievable region) of the system of
interest and optimizing the overall system-wide performance objective over this space. This is
radically different from conventional formulations based on dynamic programming. The approach is
explained with reference to a simple two-class queuing system. Powerful new methodologies due to
the authors and co-workers are deployed to analyse a general multiclass queuing system with
parallel servers and then to develop an approach to optimal load distribution across a network of
interconnected stations. Finally, the approach is used for the first time to analyse a class of intensity
control problems.
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1. Introduction

The last decade has seen a substantial research focus on the modelling, analysis and
optimization of complex stochastic service systems, motivated in large measure by appli-
cations in areas such as computer and telecommunication networks. Optimization issues
which broadly focus on making the best use of limited resources are recognized as of increasing
importance. However, stochastic optimization in the context of systems of any complexity is
technically very difficult.

For the most part, the optimal dynamic control of queuing and other stochastic systems
has been approached via dynamic programming (DP) formulations. Within such formula-
tions, a variety of special arguments (of which the simplest and most effective have been
interchange arguments) have been adduced to obtain structural results concerning optimal
controls. A good summary of how things stood in the mid- to late 1980s can be found in
chapters 8 and 9 of Walrand (1988). It would not be unfair to claim that a consensus view of
this enterprise is that there was relatively little to show for a large amount of effort and that a
pressing need existed for new approaches. One notable success, though, was the elucidation
by Gittins (1979, 1989) of index-based solutions to a variety of optimization problems
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concerned with the sequential allocation of effort among a collection of competing projects
(or bandits as they are sometimes called). In Gittins’s solutions, each project has a priority
index which depends on its current state (and, possibly, its past history) and effort is
optimally allocated at each decision epoch to whichever project has the highest current index
value. The indices concerned are now known as Gittins indices and the associated procedure
for the allocation of effort is a Gittins index (or, simply, an index) policy. Until fairly recently,
most subsequent developments of index theory by, for example, Glazebrook (1982), Weber
(1992), Weiss (1988) and Whittle (1980) took place within DP formulations (broadly defined).
Inter alia, index policies have been shown to be optimal for a range of simple multiclass
queuing systems. In these, an index is typically attached to each customer class. The resulting
index policy will select customers for service on the basis of (maximal index) class mem-
bership only.

Many of the most important recent developments in the control, for example, of multiclass
queuing networks have sought to optimize some associated (limiting) process, whether a
diffusion process (Brownian system model) in heavy traffic (see, for example, Harrison and
Nguyen (1993) and Harrison and Wein (1989)) or a fluid model (see, for example, Atkins and
Chen (1995) and Maglaras (1997)). These are powerful methodologies and have rightly been
very influential. However, since the main focus of optimization is an approximating or
limiting process there can be formidable challenges in the subsequent derivation of controls
for the queuing system of original interest and in the evaluation of such controls. See
Harrison (1996) and Maglaras (1997).

The paper concerns a different approach—namely the so-called achievable region or
mathematical programming approach. It is possible that this could ultimately turn out to be
more limited in its range of applications than those cited above (although the current pace of
development throughout the field makes a final judgment impossible). However, it does have
the considerable advantage of staying in firm contact with the original stochastic system of
interest throughout. Hence, when analyses via this methodology are available, they typically
make clear and strong statements about the control policies identified.

The achievable region approach seeks solutions to stochastic optimization problems by

(a) characterizing the space of all possible performances (the achievable region) of the
stochastic system and
(b) optimizing the overall system-wide performance objective over this space.

The performance space in (a) is often a polyhedron of special structure, yielding in (b) a
mathematical program (usually a linear program (LP)) for which efficient algorithms exist. In
some respects, the approach can be thought of as having its roots in well-established LP
approaches to stochastic optimization; see, for example, Manne (1960). However, rather than
use standard LP formulations in the variable space of state—action frequencies (which is
typically huge or infinite) we aim to develop analyses in some projected space (hopefully, of
much reduced dimensionality) of natural performance variables. The earliest contributions in
this vein were due to Gelenbe and Mitrani (1980), followed by Federgruen and Groenevelt
(1988). Contributions by Shanthikumar and Yao (1992) and Bertsimas and Nifo-Mora
(1996) took the approach decisively further forward, the latter giving an account of Gittins
indices from this perspective. In an important related contribution, Whittle (1988) considered
the intractable restless bandit problem, in which the competing projects models of Gittins
(1979) were generalized to allow for changes of state to occur in projects even when not in
receipt of effort. Whittle’s analysis via an LP relaxation of the problem produced an index
characterized as a Lagrange multiplier associated with a conservation constraint. Weber and
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Weiss (1990) developed these ideas further and established a form of asymptotic optimality of
the policy based on Whittle’s index under stated conditions.

Our goal is, firstly, to bring the achievable region approach to the attention of a wider
audience than it has enjoyed hitherto. For this, many of the ideas alluded to in the previous
paragraph are presented in Section 2 in a way which we trust will be widely accessible. In
addition a range of powerful new methodologies with which the authors and co-workers have
been associated are described and illustrated by the discussions in Sections 3-5 of a range of
important stochastic optimization problems. This material is new and should convey
something of the power and scope of the achievable region approach. Given a familiarity
with the content of Section 2, the later sections are self-contained with Section 3 the most
demanding technically. Section 3 discusses the status of index policies for a general multiclass
queuing system with servers working in parallel. We consider in Section 4 an approach to
distributing the workload across a network of interconnected stations when each station is
assumed to schedule its own offered load optimally. The problem of controlling input and
output rates for a simple queuing system is discussed in Section 5. The paper concludes in
Section 6 with proposals for future work.

2. The achievable region approach

For definiteness, we shall develop the core ideas underlying the achievable region approach in
the context of multiclass queuing systems. Such systems have frequently been proposed as
models for computer and communication systems which typically are requested to handle
several traffic types simultaneously. Let £ = {1, 2, . . ., N} denote a set of customer classes.
Customers in the system require service which is provided by a collection of servers. A control
u is a rule for determining how servers should be assigned to waiting customers. The set of
admissible controls is denoted U. Although admissibility will be defined in context, it will
invariably be required that controls should be non-anticipative (decisions are made on the
basis of the history of the process only) and non-idling (servers should never be idle when
there is work to be done). With each control u is associated a system performance vector
x" = (x], X3, . . ., Xy) with x} denoting the class i performance, i € E. Throughout the paper,
x} will be the expectation of some quantity related to class i. A standard choice for x7,
denoted E,(N,), is the long-term average number of class i customers in the system under
control u. The performance space is the set of all possible performances, denoted X =
{x", u € U}. There is a cost ¢(x") associated with operating the system under control u which
depends on the control only through its associated performance. The stochastic optimiza-
tion problem of interest is expressed as

7T — igg{c(x”)}. (1)

The prime goal is the identification of a control #°F Tattaining the infimum in equation (1). If
X is known, an alternative computation of Z°%T is via the minimization

VAR inf{e(x)}. )

In all the cases that we shall consider we shall have ¢(x) = ¢'x for some cost vector ¢ and X a
convex polyhedron, yielding in equation (2) an LP. Solving equation (2) will yield x°*T, the
optimizing performance. The question then arises of whether a control u°F" can be found
which realizes x°F".
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The achievable region approach seeks solutions to stochastic optimization problems as in
equation (1) by

(a) the identification of the performance space X,

(b) solving a mathematical programming problem as in equation (2) with feasible space X’
and

(c) the identification of controls yielding the optimum performance.

To give the reader some idea of how the approach might proceed, we outline the case of a
two-class M/M/1 queuing system, first analysed in this manner by Coffman and Mitrani
(1980).

Customers of class k arrive at a single server according to independent Poisson streams
of rate A\, with service requirements (independent of each other and of the arrival streams)
which are exponentially distributed with mean 4", k = 1, 2. The rate at which work arrives
in the system is \; /p; + A,/ p, which is assumed to be less than 1 (the available service rate) to
guarantee stability, i.e. the time-average number of customers in the system is finite. Controls
for the system must be non-anticipative and non-idling and priorities between customer
classes may be imposed pre-emptively (i.e. a customer whose requirements have not yet been
fully met may be removed from service to make way for another customer of higher priority).
The goal is to choose a control u to minimize a long-term holding cost rate, i.c.

Zo" = },Ielg {ci E.(Ny) + ¢; E,(N,)}. (3)

In expression (3) ¢, is a cost rate, N, is the number of class k customers in the system and E,
denotes an expectation taken under the steady state distribution when control u is applied.
The achievable region approach solves the stochastic optimization problem (3) by proceeding
through the above steps (a)—(c) as follows.

2.1. Identification of the performance space X

Our first goal is to develop a suitable collection of equations and inequalities involving the
steady state expectations E,(N,) and E,(N,). For this, we consider the work-in-system pro-
cess whose value at time ¢ under control u is denoted by V(7). This quantity is equal to the
sum of the remaining service times of all customers in the system at time . All sample paths
of V,(¢t) under non-idling controls u consist of upward jumps at customer arrival epochs
(when additional service requirement enters the system) followed by a period during which
this quantity is reduced at rate 1 as service is executed. Each such period terminates either
with an empty system when V,(¢) hits the value 0 or with an upward jump when the next
customer arrives. A little reflection will enable the reader to see that the sample paths of V,(¢)
do not depend on the choice of non-idling u. It will certainly follow that in the steady state the
expected work in the system is control invariant. In the case of our simple two-class system
the constant concerned is easily identified and we can infer that

E/(N) | E(N oy
N | EN2) _ pui F patta uel. 4)

Hy Ha L=pi—p

That the expression on the left-hand side of equation (4) is the expected work-in-system in the
steady state follows from the assumption of exponential service times. This implies that each
class k customer in the system must have expected remaining service requirement equal to
pi', k=1, 2. Note that the key quantity p, in equation (4) is equal to A, /., k =1, 2.
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We develop these ideas further by considering V}(¢) as the work-in-system at time ¢ due to
customers of class 1 only. We should not expect this new quantity to be control invariant. It
will depend in general on how control u distributes service between the two classes. In fact, it
is not difficult to see that, for each realization of the system, ¥!(7) will be minimized for each
by the control # which always gives class 1 customers priority in service over class 2. Hence
the steady state expected class 1 work in the system is also minimized by such a priority
policy, which we denote 1 — 2. This yields the inequality

E,(N)) > /’1!11_1 ’
1 1 —p
where the right-hand side of inequality (5) is the mean work-in-system of an M/M/1-system

serving class 1 customers only. Repeating the argument from the perspective of class 2 we
obtain

ueu, ®)

E,(N,) > /’2#271 ’

120) 1 —p,
with the right-hand side of inequality (6) attained when the system is controlled by the
priority policy 2 — 1. Motivated by expressions (4)—(6), we take xi = E,(N,)/ . as the class
k performance associated with control u, k = 1, 2. From expressions (4)—(6), it immediately

follows that performance space X = {(x}, x3), u € U} is contained within the line segment P
given by

uelu, (6)

-1 -1 -1 -1
+
p:{m,m N> P Pt ,xlﬂz:mmmuz}_ o
1 —p 1 —p, L—p—p

See Fig. 1. To show that P C X, observe that the end points of P, labelled 4 and B, may be
identified as the performances associated with the priority policies 1 — 2 and 2 — 1
respectively. This follows from the discussion around inequalities (5) and (6). Any point of P
is a convex combination of 4 and B and hence is easily seen to be the performance of a
suitable randomization of the policies 1 — 2 and 2 — 1. Hence all points of P are
performances, as required. We conclude that X = P.

| A(1-2)

B (2‘—> 1)

Fig. 1. Line segment P
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2.2. Solution of a linear program with feasible space X
For reasons that will soon become clear, consider the LP

AN )1([61}; (Crpmxy + Capipx7). (®)
It is trivial to show that the minimum is attained at end point 4 when ¢, u; = ¢, and at end
point B otherwise.

2.3. Solution of the stochastic optimization problem of interest
Our objective is to identify a control u°"" to solve equation (3), rewritten as

Zo = igf(cl,uflxlll + a15X3). )

Since X = P, the quantities in equations (8) and (9) are equal. However, from Section 2.2, the
x°PT which solves the LP in equation (8) is known and we can readily identify a «°"" giving
rise to this performance. When ¢, > ¢yp10, X°°7 = 4 and a control achieving this is 1 — 2.
When c¢,p, = ¢y, X°'0 = B and this is achieved by 2 — 1. We thus conclude that the
control solving equation (9) is the so-called cu-rule which gives priority to the customer class
with the larger ¢, u,-value. Hence the optimal control favours options which drive down the

holding cost rate most rapidly.

For certain classes of system, the above analysis can be generalized as follows: equation (4)
is replaced by a generalized work conservation law for the entire set E of customer classes,
given by

S Vix! = b(E), uel, (10)
jeE
with Vf, j € E, a set of positive constants. To generalize inequalities (5) and (6) suitably, we
must consider an arbitrary subset S of customer classes. We then have

SV = b(S), uel, (11)
Jjes
for positive constants Vf, j € S, with the right-hand side of inequality (11) attained by any
control which gives customers in S priority over those not in S. This latter requirement is
expressed by

SV = b(S) for u: S — S° (12)
jes
Note that the approach requires that expressions (11) and (12) hold for all proper subsets of
E. Bertsimas and Nifio-Mora (1996) referred to expressions (10)—(12) as generalized
conservation laws (GCLs). It follows trivially from these laws that when performances are
positive valued the performance space X must be contained in the convex polyhedron

P= {x e, Vix; = b(S), SCE, and Y. Vix; = b(E)}. (13)
jes JeE
Bertsimas and Nifio-Mora (1996) further showed that when X is convex it must be true that

P C X. They demonstrated that each extreme point of P must be the performance associated
with a static priority policy, namely a control which chooses between customers according to
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a fixed ordering of their classes. Each non-extreme point can be expressed as a convex
combination of extreme points and hence is easily seen to be the performance associated with
a suitable randomization of a collection of such policies. It follows that X = P.

We suppose that the stochastic optimization problem of interest can be expressed as

OPT _ . u -
VA Illrelbf{(j; cjxj> = r}r{lellr)l(j;cjxj) (14)

Now, the LP on the right-hand side of equation (14) can be shown to be solved by the
performance x = xS of a Gittins index policy and hence, by an argument that is similar to
that used in our simple example, such a control must solve the stochastic optimization
problem. The Gittins index policy ug operates by giving each customer class k& an index G,
and then implementing priorities among the customer classes in £ according to these indices,
with the maximal index class being accorded highest priority. The indices are obtained from
the so-called adaptive greedy algorithm AG(V, ¢) whose inputs are the matrix V=
{V_f,je S, S C E} and the cost vector ¢. See Glazebrook and Nifio-Mora (1997) for a
description of the algorithm which computes the indices in order from smallest to largest.
From this approach, Gittins index policies can be shown to be optimal for a reasonably
general class of single-server models for the dynamic scheduling of stochastic projects and
multiclass queues called branching bandits. See Weiss (1988) for details. These models
include many classical ones, including the discounted multiarmed bandit of Gittins (1979,
1989) and the multiclass queue with Bernoulli feed-back of Klimov (1974). Systems whose
optimal control can be characterized by a set of priority indices as described above are called
indexable in Bertsimas and Nifio-Mora (1996). In that sense, a linear objective together with
GCLs (10)—~(12) are sufficient for indexability. See Whittle (1988) for a different notion of
indexability developed in the context of an analysis of restless bandits.

In the above examples of stochastic optimization problems based on GCL systems the
performance space X can be identified (exactly). When this is not possible we may be able to
proceed as follows. Firstly, identify constraints (assumed linear for our purposes) that are
satisfied by the performance of choice x" under all # € U. Such constraints will determine P, a
subset of (M) containing X. Assuming a linear objective, equation (14) is now replaced by

ZOPT _ inf( > c,-x}‘) > min( > cjx,>
eu \ ; ’ XeP \ ; ’
“ JeE JjeE

where the right-hand optimization problem is an LP with associated value Z'*. Consider the
dual of this LP and suppose that we can identify a feasible solution with value Z”. Writing Z“
for the cost associated with control u, we invoke standard LP theory (weak duality) to infer
that

Zu > ZOPT > ZLP > ZD. (15)

Inequalities (15) can be used in (at least) two different ways to shed light on the performance
of some heuristic control u of interest. Firstly, a computational approach could evaluate Z“°
as a lower bound on the minimized cost and use it as a yardstick to assess control u. Secondly,
from inequalities (15), the quantity Z“ — Z°"" which measures the degree of (cost) sub-
optimality of control u is bounded above by Z* — Z”. It is sometimes possible to make
choices of u and a feasible solution to the above dual such that this latter quantity (or upper
bounds on it) may be identified as a helpful performance guarantee on u. Inequality (35) in
Section 3 is an example of what can be achieved.
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It is such ideas which lie behind the recent contributions of Glazebrook and Garbe (1999)
and Glazebrook and Nifo-Mora (1997) which were prompted by the discovery that many
systems of interest come close to satisfying the GCL requirements (10)—(12) above but fail to
do so exactly. In such cases, Gittins index policies may reasonably be expected to perform
well for linear objectives, if not optimally. It is possible to use these ideas based on the
primal-dual structure of an LP to obtain performance guarantees for index policies. In
Section 3 this methodology is exploited to develop an analysis of a general multiclass queuing
system serviced by M servers in parallel. In the single-server case M = 1, expressions (10)—
(12) are satisfied exactly and Gittins index policies are optimal for a linear objective. When
M > 1, we can develop measures of how close we come to achieving this (in theorem 1) which
in turn leads (in corollary 1) to performance guarantees for such policies.

Another avenue of recent development has concerned work aimed at developing our
understanding of how the optimal return Z°"depends on the mix of customer classes
requiring service. Garbe and Glazebrook (1998a) investigated system properties which yield
laws of diminishing returns (increasing marginal costs) as more demands are placed on the
system. This work is exploited in Section 4 to develop an approach to distributing the load
across a network of interconnected stations, when the work offered at each station is itself to
be scheduled optimally. Note that the work in Sections 3 and 4 is in part motivated by a
desire to consider systems of greater complexity than the single-server models of classical
index theory. This seems an important research priority, particularly in the light of (for
example) recent advances in parallel computing on multiprocessor systems.

We finally pause to note that the achievable region approach has recently found
application outside the scope of the GCL framework. Bertsimas (1995) discusses polling
systems, multiclass queuing networks and loss systems. Nifio-Mora (1998) has begun a study
of intensity control problems from this perspective. Some early conclusions are presented in
Section 5.

3. A general multiclass queue on parallel servers

We consider here the optimal control of a general M-server queuing system. In the single-
server case M = 1, we demonstrate that the system satisfies GCL (10)—(12) and in con-
sequence Gittins index policies are optimal for a linear objective. The analysis of this
case will show the reader how GCLs may be established in practice. Note that this index
result is not new. See Bertsimas et al. (1995) for an account. What is new here is our
development of that analysis to tackle the notoriously difficult parallel server problem with
M > 1. Here we do not have exact GCLs but we come close. As a consequence, Gittins index
policies come close to optimality. Following the work of Glazebrook and Garbe (1999), the
achievable region approach furnishes us with performance guarantees for index policies, from
which their asymptotic optimality in a heavy traffic limit may be inferred.

M servers are available to process the requirements of customers from classes in E =
{1, 2, ..., N}. An assignment of available customers to servers is made at each integer
time point. If a class i customer is assigned to server m at time ¢ (which occurrence is
registered by assigning the indicator function I7'(¢) the value 1; it is 0 otherwise) then at time

¢ + 1 that class i customer disappears to be replaced by n/” = {n]", ni5, . . ., niy} customers of

classes 1, 2, ..., N respectively. For a given i € E, the vectors n/" are independent and
identically distributed (IID) as (¢, m) varies and for simplicity ¢ (and sometimes also m) will
be dropped from the notation when no confusion arises. As we shall see, this modelling

approach enables us to incorporate state transitions for existing customers as well as new
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arrivals into the system. To complete the description of the system, note that an idle server is
deemed to be serving a class 0 customer and we suppose that there are always M such
customers in the system, one for each server. This additional class is needed to ensure that the
model allows new arrivals to enter an empty system. We extend the notation n}” to include
the case i = 0, but note that ny, = 1 and n,, = 0 for all i # 0.

If N,(f) denotes the number of class i customers in the system at decision epoch ¢, then the
evolution of the system between ¢ and ¢+ 1 is described by

Nt +1) = N0 + zMj f () - 8), icE, (16)

m=1 j=0
No(t+ 1) = Ny(t) = M.

In equation (16), ¢; is the Kronecker delta. The set of admissible controls I/ available are

(a) non-anticipative,
(b) non-idling (which here means that E has priority over 0) and
(c) server symmetric (scheduling systems do not use server label information).

This third requirement is not strictly needed. It has been included for simplifying the
discussion at certain key points. We can guarantee the stability of this system under all u € U
(the time-average number of customers in the system is finite) by requiring that the N x N
matrix I — n be positive definite. Here I is the identity and n has (i, j)th entry equal to E(n;).
See Bertsimas and Nifio-Mora (1996). We shall assume that admissible controls result in a
discrete time stochastic process {N(#)}>_., with unique stationary distribution, all of whose
second moments are finite. Write

pi = EAL (D), ie EU{0}, (17)

for the probability that control u assigns server m to a class i customer at decision epoch ¢,
where the expectation in equation (17) is with respect to the stationary distribution. That this
expectation does not depend on ¢ (by stationarity) and m (by server symmetry) is clear.
However, it turns out that it is also independent of the control u. To see this, apply E, to both
sides of equation (16) and use

Eu{Ni([ + 1)} = Eu{Ni(t)}» i€ E,

to infer that p" satisfies the system of equations

N

% i E(”i/) =}, JEE,
N (18)
Yopi=1

i=0

This has a unique solution when I —n is non-singular. We shall write p without the
superscript in what follows. One particular focus of the analysis will concern the quality of
the control policies in heavy traffic. In discussing a sequence of systems, we are said to
approach the heavy traffic limit if the value p, (the steady state probability that a server is
idle) approaches 0.
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3.1. Example
Consider a discrete time version of a multiclass M /G /parallel queuing system with M servers
and customer feed-back as follows: customers belonging to one of L classes arrive for service
according to independent Poisson streams with A, the rate for class /, 1 < / < L. Service times
T, for class / customers are IID discrete random variables whose distribution has finite
support {1, 2, . . ., R;}. F; denotes the distribution function of 7). Once a class / customer has
completed service, she or he is fed back to the system as a class k customer with probability p;, or
leaves the system with probability p, = 1 — St_, ps. The scheduling regime gives to each
customer chosen for service a single unit of processing before the position is reviewed again.
It is straightforward to cast this example into the general framework above. We require
classes labelled {(/, r), 0 <r < R, — 1, 1 <[ < L} with (/, r) representing those class / cus-
tomers in the system who have already received r units of processing. A newly arrived
class / customer (either from outside or via feed-back) belongs to (/, 0). When a unit of
processing is allocated to a class (/, r) customer, there are two possibilities: either there is a
failure to complete service and the customer is now in class (/, » 4+ 1) or service is completed
and the customer leaves the system or feeds back as a (k, 0) customer for some k. This,
together with consideration of external arrivals, yields the following choices of the com-
ponents of the matrix n:

1_F1(7+1)

E{n(/,r), (1,r+1)} = 1— FZ(V) '

A, {F G+ 1) = Fi()}pi
M 1 —F(r) ’
M
M’

E {”(1,,'). (k.O)} =

Efn,, (k,O)} =
(19)

Now introduce the system parameters ¢, 1 < /< L, obtained as the solution to the linear
system

L
=N+ > pus I</< L. (20)
k=1
The quantity «; is easily seen to be the total arrival rate for class / customers, aggregating the
external arrival rate ()\;) with an internal rate (the second term on the right-hand side of
equation (20)) obtained via feed-back. Substituting from equations (19) and (20) into the
equations (18) we obtain solutions in the form

1 —Fi(r)
= — 0<r<R-1, 1<I<L.
Purn = M 5 r 1
Hence we deduce that
L R—1 L E(T)
pozl—lzlg%p(,,r):u;a, 250 (1)

in the heavy traffic limit. Note that ¥, a; E(7T,) measures the rate at which work is created.
Hence equation (21) asserts that the heavy traffic limit is attained as this approaches M, the
total service rate available.
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Returning to our general system, our stochastic optimization problem is expressed as

ZOPT = mf<z X! ) (22)

where ¢; > 0, i € E, and
x; = E{Ni(0)}, i€ E, (23)
the expectation being taken under the stationary distribution. We would like to generate

linear (in)equalities of the forms (10) and (11). For this, we deploy the potential function
approach of Bertsimas ez al. (1995) who considered the quantity R%(r)*, where

R (1) =Y Vi Nyo), 24)

ieS

for suitably chosen V¥, i € S. Note from equation (23) that E,{R5(r)} is precisely the quan-
tity on the left-hand side of inequality (11). We choose the positive constants V3, i € E, as
solutions of the linear system

V=14 Emy)V?, i€k (25)
Jjes

Observe that V7, i € S, may be thought of as the mean amount of S-work required by a class
i customer —i.e., beginning from a situation in which only a single class i customer is present
and under a control which gives priority to S, this is the mean amount of processing required
until no S-customers are present. Hence R(7) is the total amount of S-work in the system at
t. Using equations (16) and (24) we infer that

Rt+1D)=RO+Y 2 Z VII(em) — o). (26)
ieS m=1 j=0
If we square both sides of equation (26), take E, and enforce the stationarity condition
EAR(1+ 1)} = E{R*(1)")
we infer the condition
2
{RS(Z) E] z(:) I7'(1) Z VS( 61-1-)} + E, H Zl Z(:) I7(1) Z VS(n — 64./-)} ] =0. (27
m=1 j= m=1 j=

Considerable simplification of equation (27) is possible which exploits the server symmetry of
u and the fact that 7;'(¢) I}'(t) = 0 whenever j # k. Straightforward algebra yields

S Vixi = E{R(t)}

ieS

—E {Rs(t)z vl <r)} FBS) + (M- DE, HZ s 1}(r>}{2 s I?(z)}],
igS igS Jés
(28)

where b(S) is a control invariant constant given by

2
bs) =1 ip,-EHz VS(n, — 5,,.)} } - 1)<1 —2zp,-V?>. (29)
2% i€S 2 i¢S
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It is from equation (28) that we can develop suitable forms of the (in)equalities (10) and (11)
for this system. The requirement in equation (12) which we need for a full GCL-Gittins index
analysis as described in Section 2 is satisfied in the single-server case M = 1. When M > 1 we
come close to having requirement (12) in a sense which is made precise in the following result.
Before stating it, note that equation (10) may be regarded as a particular case of equation
(12), namely for S = E. We shall also require the notation b* = max(b, 0) for set functions b.

Theorem 1 (exact and approximate GCL for the system).

(a) For all values of M and all controls u € U
>V = bH(S), SCE. (30)

ieS

(b) In the single-server case M = 1 the system satisfies GCLs, i.e. in addition to (a) we
have

S Vixy =b7(S) = b(S) foru: S— S, SCE.
ieS

(¢) When there is more than one server, M > 2, controls u which give S priority over S°
come within a finite constant of achieving the bound on the right-hand side of in-
equality (30). In particular

; Vixt < b*(S)+%(M— D3 +a)V°, SCE, (31)
where
n= max {/; E(nf,-)} and V5= rrl}ezgx( Vo).
Outline proof.

(a) The left-hand side of inequality (30) must be non-negative as must the first and third
terms on the right-hand side of equation (28). Part (a) is then an immediate con-
sequence of equation (28).

(b) If M =1 and u gives S priority over S then, under u,

R5(t) > 0=N,(f) >0 forsomeiec S=I(1)=0, i¢gS5.

Hence the first term on the right-hand side of equation (28) is 0. Since the third term is
0 trivially, the result follows.

(c) In the case M = 2 we are required to bound the first and third terms in equation (28)
from above for policies u which give S priority over S°. Taking the first term, we can
assert that, since under u

STN(1) = M=I'(1) =0, igS,

ieS

it follows that
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EL,{RSm >V I_}(t)} S WM =DV VFE (1)
JjéS jés

=M-1)VES p Vi = (M- 1V (32)
j#s
In expression (32), note that X p; Vf =1 may be established either algebraically
(from equations (18) and (25)) or by the use of probabilistic arguments. We now
consider the third term in equation (28). A Cauchy—Schwarz inequality yields

E) HZ vs 1}(0}{2 vy Ime <E, HZ vi 1}(1)}2}

ieS igS igS

=S (VY <1+ (33)

jgs
The last inequality in expression (33) follows simply from equation (25). The result is
now a straightforward consequence of expressions (28), (32) and (33). O

We see from theorem 1, parts (a) and (b), and the material in Section 2 that in the single-
server case M = 1 the requirements described in expressions (10)—(12) are met (i.e. GCLs are
satisfied) and the stochastic optimization problem (22) is solved by a Gittins index policy. The
indices concerned are derived from the adaptive greedy algorithm AG(V, c).

In the parallel server case with M > 2 we proceed as follows: from theorem 1, part (¢), the
set function @ given by

O(S) = L(M — )3+ AV, SCE, (34)

is a natural measure of how close we come to satisfying the GCL requirement in equation
(12). As sketched briefly in Section 2, Glazebrook and Garbe (1999) utilized the primal-dual
structure of an LP to develop a performance guarantee for the Gittins index policy derived
from AG(V, ¢) in terms of the measure ®. Numerical and analytical evidence to date suggests
that the tightest such guarantees available perform very well in bounding the level of sub-
optimality of the index policy ug. We shall give a somewhat simplified account here which
will be sufficient for our purposes. Note that the bounds that we shall describe are by no
means the tightest that are available from the methodology.

Application of AG(V, ¢) yields the indices G;, i € E. The customer classes are then renum-
bered such that Gy > Gy_; = ... = G,. Hence, the index policy ug implements priorities
among the customer classes in decreasing numerical order. We identify S(j) = {j,j+ 1,
..., N} as the set of cardinality N — j+ 1 of classes with highest index. Note that ug prefers
S(j) to S(j)* for all j. Our goal here is to develop a bound for Z“¢ — Z°FT where Z“C is the
expected cost associated with the Gittins index policy. From the work of Glazebrook and
Garbe (1999) we have that

N
7' = 7 < S @IS(NG, ~ Gior) (35)
J=

where @ is the above measure and G, is taken to be 0.
It is not difficult now to establish corollary 1 by substituting from equation (34) into
inequality (35) and utilizing the form of the algorithm AG(V, ¢) which produces the indices.

Corollary 1 (performance guarantee for Gittins index policy when M > 2).
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z' — Z%T < LN(M — 1)(3 + A) max;cx(c,).

One remarkable thing about the claim in corollary 1 that the index policy comes within a
constant of optimality is that the optimum cost Z°"T becomes infinite (under reasonable
conditions) as the heavy traffic limit is approached. Hence u; is asymptotically optimal in a
sense made precise below. Such a result is not unexpected. Index policies are optimal in the
single-server case since they always make choices which drive down the rate at which costs are
incurred as rapidly as possible. The parallel server case is complicated by the issue of how
effectively controls utilize the full service capacity. (Attempts to tackle these issues directly
have met little success. See Weiss (1992, 1995) for an authoritative discussion in the context
of much simpler models than those cited here.) However, and to oversimplify the issues
concerned hugely, in the heavy traffic limit server utilization disappears as an issue and the
system looks increasingly like one serviced by a single server working at M times the speed.

To establish the asymptotic optimality of ug we can infer from inequality (30) with S = E
that

ZOT =3 e = min(e;/VE S VEXPT = b(E) min(e;/VF) (36)
icE JeE icE JeE
with the set function b given by equation (29). It will be enough to investigate conditions
which guarantee that the right-hand side of expression (36) diverges to oo in the heavy traffic
limit p, — 0. One way of achieving this is as follows: suppose that the vectors n; record two
types of change to the composition of the system, namely

(a) external arrivals into customer classes within some designated subset 4 C E and
(b) internal transfers via feed-back or some other transition mechanism.

Plainly, our example above of an M/G/parallel system with feed-back may be thought of in
these terms. Hence when i € EU {0} we write

A; + i jed
— J UM >
My = {ﬁi]-, otherwise. (7

In equations (37), 4; denotes external arrivals to j (assumed independent of all other 4; and
all the 71;;) and 7; internal transfers from 7 to j. We assume that E(4;) = \;/M, where ), is
an overall class j arrival rate for the system. We shall approach the heavy traffic limit by
increasing the \; appropriately while

(a) keeping the E(7;) fixed and
(b) keeping var(A4;) bounded away from 0.

Note that (b) is required to avoid certain pathologies which occur in deterministic cases. Note
also that all this is quite natural in the M/G/parallel case.
Utilizing equations (37) within an expanded version of equation (25) which includes the
‘idleness’ class 0, we can solve for VZ = [Vf, j € EU{0}], obtaining
VE=Pd —i) e, (38)
where in equation (38)

=1+ NVi/M,

jeA
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e is a vector with all entries equal to 1 and i is a matrix whose (7, j)th entry is £(71;). Note that
I — i is guaranteed non-singular by earlier assumptions.

Recall from the proof of theorem 1 the identity X ij,-S = 1. In the case S = E this
yields p,V§ = 1. Hence in the heavy traffic limit py — 0 and V§ — co. However, in equa-
tion (38), since we have assumed that I — fi remains fixed as we take the limit, it must follow
that 7 — oo and hence that VjE — 00, j € E. We can now assert the asymptotic optimality
of the Gittins index policy ug.

Theorem 2 (heavy traffic optimality of Gittins index policy when M > 2). In the above
heavy traffic limit

Zu(; _ ZOPT

Proof. We utilize equation (29) to obtain b(E). By standard results and the fact that
poVE =1, we deduce that

2b(E) = i p; var(z V,-Enj,-> —(M-1)
Jj=0 ieE
>3 var(z V,-EA,-) — (M- (39)
Jj=0 icA
= S (VEV var(4) — (M — 1), (40)

To obtain inequality (39), we use equations (37) and the independence assumptions follow-
ing. From expressions (36), (38) and (40) we conclude that

ZT > 0(P) - o0

in the heavy traffic limit. The result now follows from corollary 1. O

4, Load balancing in distributed systems

A common architecture for multiprocessor systems is a distributed one consisting of a
network of (relatively) autonomous servers. The issue of the efficient allocation of resources
in such contexts is both important and complex. See Gelenbe and Pekergin (1993). One
fundamental question concerns the distribution of work across the network or, as we shall
call it, load balancing. The theoretical literature has, in the main, concentrated on very simple
models. For these, simple round robin policies and Bernoulli routing with equal probabilities
have frequently been proposed as optimal load balancing regimes when little information is
available to the controller. See, for example, Liu and Towsley (1994). When full information
on queue lengths is available, the join the shortest queue strategy has been shown to be
optimal for a variety of models. See Weber (1978).

In a contribution which represented a significant advance, Ross and Yao (1991) showed
that considerable savings could be made if optimal scheduling of the work offered at each
station of the network could be incorporated into the load balancing problem. Their work
made use of the achievable region approach, but predated many of the most significant
advances outlined in Section 2. The authors of the current paper and co-workers plan a much
more extensive study and we report here some of the early findings.
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We shall consider a communication network interconnecting multiple stations, with two
types of jobs generated at each station: those which are dedicated (D) to that station and
must be processed there and those which are generic (G) and could be processed anywhere in
the network. There may be several classes of D- and G-jobs, arriving in independent Poisson
streams. We seek to split the G-traffic between the individual stations in an optimal fashion
given that each station schedules its offered work (both D and G) optimally. On the basis of a
realistic appraisal of the communication and processing overhead generated thereby our
policies for scheduling at each station will be dynamic (i.e. decisions will be made on the basis
of the evolving state of each station) whereas the load balancing component of the problem
will be static (i.e. the vector of generic arrival rates will be split once for all between the
stations). At this point we introduce two simple examples to assist the reader.

4.1. Examples

It may seem plausible to conjecture that when the stations in the network are identical (in
all relevant respects) then an optimal load balancing regime will split the G-jobs equally be-
tween them. The following simple examples will caution the reader against drawing such
conclusions too easily. In both examples the network comprises two identical single-server
stations. In each case there are two G-job classes and no D-jobs. The objective in both
examples is the minimization of ¢; E(N,) + ¢, E(N,) where E(N,) is the expected number of
class i jobs in the system and the expectation is taken under the steady state distribution of
the corresponding stochastic process with ¢; a holding cost rate, i = 1, 2.

4.1.1. Example 1

Here we shall suppose that generic job class 1 has zero holding costs (¢; = 0) but a high
arrival rate to the network (\; = 0.9), whereas for job class 2 we have positive holding costs
(¢, = 1) and a low arrival rate (A, = 0.1). The processing time of all jobs is exactly 1 and at
each station scheduling is non-pre-emptive. Plainly at both stations the optimal scheduling
regime prefers class 2 to class 1 and must impose that priority in a fashion that is non-pre-
emptive.

Since ¢, = 0, our objective is to split the load in order to minimize E(N,). An even split of
arriving jobs between the stations will result (frequently) in situations where an arriving class
2 job finds the machine busy with a class 1 job and is thus delayed while its processing is
completed. An alternative regime in which all class 1 jobs go to one machine and all class 2
jobs go to the other will result in less frequent delays to the latter because A, is small. Simple
calculations show that the ‘one job class per machine’ regime yields a 16.43% saving in
expected cost over an even distribution of work.

4.1.2.  Example 2

Plainly the non-pre-emptive nature of the scheduling regime plays a significant role in
example 1. Consider now a situation in which scheduling priorities are imposed pre-
emptively. We shall suppose that all processing times are exponentially distributed with mean
1 for class 1 and mean 0.1 for class 2. The usual full range of independence assumptions is
made. We also take ¢, =1, A, = 0.5, and ¢, = 0.1, A\, = 10. Direct calculations show that a
(nearly optimal) splitting of the load in which all class 1 traffic is directed to station 1, while
85% of class 2 traffic goes to station 2, offers a 17.25% saving in expected cost over an even
distribution of work. Note that example 2 elaborates example 1 in that processing times for



Achievable Region Approach 763

generic jobs are not identically distributed. Subsequent theory serves to show that this is a
required feature for an even split solution to be suboptimal with exponential processing times
and priorities imposed pre-emptively.

We shall suppose that our load balancing problem may be expressed as

m

min {z ngT(Am)} subject to Ae = A. (41)

In problem (41), A, is the offered load (i.e. arrival rate) of class g jobs at station m, where
g € G, A, is the vector of generic loads at station m and A = {),,,} is the generic load matrix.
Vector A summarizes the total generic load for the network and e is an M-vector of 1s, where
M is the number of stations. Z97T(X,,) is the minimized cost at station m when \,, is the
generic load offered there. This minimized cost is achieved when the offered work is scheduled
optimally.

Plainly, an ability to compute and/or characterize the returns Z5 ' as functions of the
generic load vectors A, will contribute to achieving optimal or nearly optimal solutions to
problem (41). As we shall now see, we can make considerable progress when each station
satisfies GCLs. We drop the station suffix m as we carry the discussion forward regarding the
individual stations in the network.

Happily it is one of the features of the GCL and indexable systems described in Section 2
that computations of expected cost for a given (priority) policy can be performed with ease,
as can the computation of minimized cost Z°F'. See Bertsimas and Nifio-Mora (1996). In
addition, Z°"T can often be characterized in a way which will ultimately assist with problem
(41) as follows. Consider a GCL system with linear costs and an associated universal set £ of
potential customer classes. For specified S C E, let Z°FT(S) be the minimized cost for the
reduced system in which only customer classes within S are allowed access to service. Garbe
and Glazebrook (1998a) showed that the achievable region approach yields the conclusion
that, subject to some additional structural requirements, Z°°" is an increasing and super-
modular function, namely

ZOPT(8) < Z°°N(1), S C T (increasing),
ZUSU ) = Z277(S) < 22N (T U ) - 207D, (42)
S C Tandj¢T (supermodular).

Supermodularity states, in this context, that allowing an additional class of customers access
to a more congested system increases the optimum cost by more than allowing the same
additional class access to a less congested system. This seems a natural property for Z°F7T.

We shall want to draw on this result in our discussion of load balancing. However, rather
than to develop the theory through general model structures which have the properties
required to establish expressions (42), for clarity we shall conduct the discussion in terms of a
specific GCL model for each station which meets the requirements. Directions in which the
material can be generalized are sketched at the end of the section.

4.2. Model for local scheduling at each station

We shall suppose that each station is a Klimov network (see Klimov (1974)) as follows (note
that we continue to drop the station suffix m): customers who are members of classes within
D U G are assumed to arrive at the station in a set of independent Poisson streams. Use A, to



764 M. Dacre, K. Glazebrook and J. Nifio-Mora

denote an arrival rate for generic class g € G and A the corresponding vector of generic
arrival rates. All customers have exponential service times with mean denoted f, ! for class
g € G. On completion of service, a class i customer may be routed to receive further service
as a class j customer with probability p;, or it may leave the station with probability
DPio = 1 — Zjepug py- All the customer arrival processes, service times and routing events are
mutually independent. The routing probability matrix P = (py, i, j € DU G) is such that
I — P is invertible, thus guaranteeing that a customer entering the system will leave it with
probability 1. Under this model, the traffic at a station can be quite general in its structure.
For example, the framework proposed allows customers to have a state which evolves in
continuous time as a (finite state) Markov process through to completion. Admissible
scheduling controls at the station are non-anticipative, non-idling and pre-emptive.

Each customer class i € D U G has an associated holding cost rate ¢; and so the minimized
cost Z°FT for the station is given by

Z"T(\\) = inf( S c,.x:f)
uell \ jepuG
with x! = E, (N,), the long-term average number of class i customers at the station. From the
theory described in Section 2, the control which achieves Z°"" will be an index policy.

We now seek to characterize Z°"T(\) as a function of the offered generic load A (holding
other model parameters fixed) over those A which yield a stable system. For the efficient
solution of problem (41), we would ideally like each Z°?T(\) to be increasing and convex.
However, in higher dimensions, full convexity is a very strong property and in general we
must settle for the weaker form described in definition 1 in which convexity is available in
certain directions only in load space.

Definition 1. A real-valued function f on generic load space is north-east (NE) convex if, for
all a € [0, 1] and all X" and X" such that A’ — X" > 0,

afN)+ 1 = a) f(N) = flaX + (1 — )X}

Such directional convexity plays an important role in other areas of stochastic scheduling.
See Chang and Yao (1993). There is a simple proof of theorem 3 which begins with the
supermodularity property in expressions (42) and infers from that properties of Z°"T(X). The
argument essentially secures increased generic arrival rates through the introduction of new
generic job classes with appropriate service characteristics. We omit the details.

Theorem 3. For our Klimov network model, the minimized cost Z°"" is increasing and NE
convex.

Note that NE convexity certainly includes convexity in each co-ordinate direction (for
fixed values elsewhere). Further, in the one-dimensional case it coincides with full convexity.
Corollary 2 follows.

OPT
Z

Corollary 2. If |G| = 1, the minimized cost is increasing and convex.

Hence we have full convexity for the case of a single generic class. This can be readily
extended in two directions. The first concerns situations in which the controller of the
distributed system cannot distinguish between generic jobs. In this case, the solution to
problem (41) will be of the form {a,,, 1 < m < M} where «,, is the proportion of all generic
traffic passed to station m. Let XA now stand, as in expression (41), for the generic load for the
network. The optimization goal becomes the minimization of
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S Z%T(a,,\) subject to o, =0, l<m<M, Y a,=L1 (43)

m

To solve problem (43), our interest is in Z°""(aX) as a function of « for fixed A, where

a € [0, 1]. The following is an immediate consequence of theorem 3.

Corollary 3. For fixed A, the minimized cost Z°"T(:A): o — ZT(aA) is increasing and
convex.

Another direction in which theorem 3 can be extended is to cover situations in which
|G| > 1, but where the generic traffic is particularly simple in structure. We shall require that
there be no generic feed-back, i.e.

pj=0forieD,jeGandieG,je DUG,

and that generic processing requirements are I1ID.

Theorem 4. If p, = p, g € G, and there is no generic feed-back then the minimized cost
Z°"T is increasing and convex.

Outline proof. Write N = |D U G|. As in Section 3, the customer classes at our single station
are renumbered suchthat Gy = Gy_; = ... = G,andagainwewrite S(j) ={j,j+ 1, ..., N}
In the notation established in expressions (10)—(14) in Section 2, it will assist to express the
dependence of the base function b on the generic arrival rate A. Hence we write b(S, \),
S C E. Recall that Z°T is the value of the LP (14) and hence also of its dual. The latter was
shown by Bertsimas and Nifio-Mora (1996) to be expressible as

J

Z97() = 3 BISU). NG, = Gy (44)

where, in equation (44), G, = 0. Note also that it is straightforward to show for our Klimov
network model that the indices G; do not depend on A.
From the GCLs (11) and (12) we may write

e\ ies(j)

It can be shown that, since the generic classes in G N S(j) have IID processing requirements
and there is no generic feed-back, then they must all have the same associated value of
Vg(j ). Hence, they may be regarded corporately as a single customer class with arrival rate
X,ecns(j)Ag SO far as the stochastic optimization problem on the left-hand side of equation
(45) is concerned. It then follows from corollary 2 that we may write

b{S(j). )\}Ebj( > )\g)
geGNS(j)

where b; is increasing and convex. Theorem 4 now follows from equation (44), the A-
independence of the indices and from basic properties of convex functions. O

We have established a range of scenarios in which the minimized cost at each station is
increasing and convex in the generic load (corollaries 2 and 3 and theorem 4, with more to
come) and a greater range for which convexity is available for certain directions in load space
(including co-ordinatewise). We now consider briefly the implications for the load balancing
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problem (41). We begin by a consideration of the special case in which all stations are
identical, i.e. the minimized cost for station m, ZO*T(-) = Z°PT(), | <m < M.

Theorem 5. When stations are identical, it is optimal to split the generic load evenly
between stations for all loads X if and only if Z°PT(-) is convex.

Proof. If Z°PT(-) is convex and \,, is the generic load for station m as in problem (41), then

3 20 = M2 (£ ) = Mz (). (46)
m=1 m=1 M M

by convexity. However, the final term in expression (46) is plainly the cost corresponding to
an even load distribution. For the converse, see Dacre and Glazebrook (1999). O

It is possible to supplement theorem 5 via the development of performance guarantees for
an even split of the generic load when full convexity for Z°F'(-) is not available. For example,
if we take one of the simplest cases of interest, namely of two identical stations each having
|D| =0 and |G| = 2 and with no feed-back, then it can be shown that an even load distri-
bution yields a cost which is within a fraction

1|H1 — ol
2+

of the optimal cost for the network. See Dacre and Glazebrook (1999). Expression (47) is 0
when 1, = u,, indicating that an even distribution is optimal in the IID case with no feed-
back. This is in agreement with theorems 4 and 5.

Note that, following theorem 3 and extensive numerical investigation, there are many
systems for which the optimum cost, although not fully convex, comes close to being so.
When the Z%7T(.) are indeed all convex, an efficient iterative procedure is available for the
load balancing problem (41) which solves a sequence of LPs determined via subgradients
of the objective. Our numerical study has shown that, in practice, this approach yields
acceptable solutions even in the absence of full convexity. In Figs 2 and 3 we illustrate the
performances of

(47)

(a) an even load distribution and
(b) this LP-based heuristic

for problem (41) for the simple case above, namely of two identical stations with |D| = 0 and
|G| =2 and no feed-back. Figs 2 and 3 are based on a grid of (60)* points with both
log,(¢,/¢;) and log,(u,/ 1)) taken to be in the range from —3 to 3 in steps of 0.1. The values of
u, and ¢; are both set equal to 1, although the results presented are the same for any assigned
values of these constants. At each grid point is presented a summary of the performance for
the chosen load balancing regimes over 120 problems—each corresponding to a choice of
generic arrival rate A. In Fig. 2, the chosen performance measure is the maximum percentage
level of suboptimality of the load balancing regime over the 120 problems whereas in Fig. 3
we report the percentage of solutions which were within 0.01% of optimality. In interpreting
the results, note the following.

(a) By theorem 5, we should expect the performance of the even load distribution to give
an indication of the extent of non-convexity of Z°FT.
(b) The formula for Z°"T in equation (44) applied to the present case may be written

ZOPT(/\) = lerp — CapialP(A) + min(eipe)P(A)
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where ¢ is a convex function of A and where v is NE convex, but not convex in general.
Hence we might expect the degree of non-convexity of Z°F" to be related to the absolute
size of ¢,y — ¢> 11 and to be at its most pronounced when log.(¢,/c;) = —log.(1s/ 141)-

(c) By theorem 4, log.(1,/1;) = 0 is a convex case for which the even load distribution will
be optimal.

The results presented in Figs 2 and 3 are wholly consistent with (a)—(c). The even load
distribution heuristic is optimal when log,(u,/p;) =0 and has its weakest performance
around the line log,(c,/c;) = —log,(uy/1;). The LP-based heuristic offers a significant
improvement when non-convexity is a serious issue and achieves a high level of performance
almost uniformly.

In addition to the special role of even load distributions for identical stations, simple
algorithms for load balancing are available when |G| = 1 and the Z977(.) are fully convex,
but where stations are not identical. The latter raises many important modelling possibilities,
including those in which the dedicated traffic has a different stochastic character at different
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stations and also where the processing time distributions of generic jobs are station
dependent. The algorithms concerned are all based on procedures which match gradients and
are variants of those proposed by Tantawi and Towsley (1984, 1985). We omit the details.

We conclude by supposing that we have such an algorithm for a network in which
corollary 2 applies at each station —namely there is a single generic class and the minimized
cost is increasing and convex. Throughout this discussion we shall require that all stations
have no generic feed-back and give D-jobs pre-emptive priority over G-jobs. With this set-up,
balancing the generic load can have no effect on the total costs incurred by dedicated jobs
across the network. In our algorithm for the |G| = 1 case, v,,()\) is the optimal generic load at
station m when A is the total generic load for the network. See Dacre and Glazebrook (1999)
for a proof of the following lemma.

Lemma 1. There is a solution to the above simple load balancing problem with |G| = 1 for
which v, is increasing for each m.

We shall show how to use such an algorithm for the |G| = 1 case to develop an algorithm
for the more general case considered in theorem 4, where the |G| generic job classes have
processing requirements which are IID at each station (but not necessarily identically dis-
tributed at different stations). We shall require that we have holding cost rates c,, g € G,
which apply across the network. It is straightforward to establish that the optimal scheduling
of generic jobs at each station is according to priorities determined by the ¢,, g € G, with the
largest ¢, having the highest priority. Renumber the generic classes such that

C\G\ > C\Gl—l > > Cy.

Recall that the total generic loads for the network are \,, g € G. Theorem 6 describes an
optimal load balancing regime for this situation.

Theorem 6. There is a solution to the above load balancing problem for which the optimal

class g load at station m is
1G] 1G]
V,,,(Z)\,-) — Vm( > )‘i)
=g j=g+1

for all g and m where v, is as in lemma 1.

Proof. Let m,,,(\) be the class g load allocated to station m by a general solution 7 to our
load balancing problem. If we write Z(w, A) for the total network cost for the generic jobs
under this solution then it is not difficult to see that we have the decomposition

Z(m, A) = % Zy(7, ). (48)
g=1

In equation (48), Z,(w, A) is the generic cost associated with an equivalent |G| = 1 network in
which the station m load is E}i (M) and the common holding cost rate is ¢, — ¢,_;. We
take ¢, = 0. But

M |G| 1G]

Z Z 7-‘—mj(>‘) = ; )‘j

m=1 j=g
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is the total load for this network, and so by lemma 1 it is optimized by allocating generic load
z/m(E,'-g'g ) to each station m. However,

|G| |G|
VU ( Z A/) = Z I/mf()\) for all g and m
=g j=¢

where v = {v,,;} is the load balancing solution proposed in the theorem. Note that lemma 1
guarantees the admissibility of v. From this we conclude that

Z(m, X) = Z(v, A) for all g
and so, from equation (48),
Z(m, A) = Z(v, N),

as required. O

4.3. Extensions

Dacre and Glazebrook (1999) have described general conditions which guarantee that a
GCL system has an increasing and supermodular value function Z°°". Systems are des-
cribed which meet the requirements and these include the Klimov network model of this
section.

Most of the above discussion via the Klimov network model supposes that the D-
customers and the G-customers at a station are dealt with on the same basis through a linear
objective involving all job classes. Hence, prioritizing between these two customer types (and
the natural proposal is to give dedicated customers a higher priority) is via an appropriate
choice of the ¢;, i € DU G. Another obvious approach is to impose the requirement that D-
customers must always be given priority over G-customers as is done in the concluding
discussion leading to theorem 6. The generic customers then have the status of ‘background’
jobs which are allowed access to service capacity which is surplus to the primary goal of
serving the D-customers. This proposal can easily be accommodated through Garbe and
Glazebrook’s (1998b) achievable region account of stochastic scheduling with imposed
priorities.

Another way of asserting the primacy of the D-customers at each station is to impose delay
constraints of the form x; < ¢;, d € D. Among the controls which meet the delay constraints
the goal would be to choose one to minimize X, ¢,X,. This is the approach of Ross and Yao
(1991) who took as their station model a multiclass M/G/1-queue with priorities imposed
non-pre-emptively. In this case we have convexity of the optimal returns for the case of a
single generic class.

5. Threshold policies for intensity control

A fundamental question which can be asked of any queuing system concerns how much work
we need to hold in the system to achieve a given level of throughput (i.e. the rate of job flow
through the system). The intuition is that letting the work in process (WIP) grow beyond a
certain level will do little to increase throughput. However, achieving a given throughput can
only be done at the expense of sufficiently large WIP. A class of policies used frequently in
practice is the class of threshold policies which control the system by setting a WIP cap. When
the WIP reaches this cap the arrivals process is shut off. The following basic questions arise.
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What is the minimum WIP level required to attain a target throughput level? When are
threshold policies optimal for maximizing a linear (or, more generally, a convex) throughput—
WIP objective?

There is a large body of research establishing the optimality of threshold policies in a
variety of queuing intensity control models. The main approach is based on demonstrating
certain structural properties (submodularity) of the optimal value function, through the
analysis of the DP optimality equations. See Glasserman and Yao (1994). In a related
approach, threshold optimality is established by using LP duality arguments. The LP
formulations concerned are closely related to DP and typically have a large or infinite
number of variables. See Yao and Schechner (1989). As explained in Section 1, the achievable
region approach seeks to construct formulations in a projected variable space of natural
performance measures. This typically involves a dramatic reduction in dimensionality, with
resulting computational advantages for dealing with, for example, side-constraints. A general
achievable region framework for threshold optimality, along these lines, is given in Nifio-
Mora (1998). This section contains an introduction to the key ideas based on an application
to a queuing intensity control model due to Chen and Yao (1990). At the end of the section
we give an indication of how the ideas generalize.

The model is a queuing system which consists of a facility servicing a single customer class.
N(t) denotes the number of customers in the system at time ¢ > 0. We control the process
{N(¢), t = 0} by means of a policy which sets the current stochastic intensities (or rates) A(f)
and pu(t) of the arrival and departure processes respectively. The sequences {\;, k =0, 1,...}
and {u,, k=0, 1,...} of input and output capacity limits impose bounds on the arrival and
departure intensities when k customers are in the system. A policy will be admissible if it is
non-anticipative (i.e. it is adapted to the system’s history), stable (i.e. the process {N(t), t = 0}
is ergodic) and satisfies the input and output capacity constraints, expressed as

N =k= M0 < N, (0 < i, 120,k=0,1,2,....

We denote by U the class of admissible policies. Of special interest is the class of threshold
policies: for each integer b = 0, the b-threshold policy sets the input intensity at full capacity if
N(t) < b, and to 0 otherwise. The output intensity is always set at full capacity.

The achievable region approach requires us to develop a notion of performance, which
here must measure both throughput (u“ for policy ) and WIP (N*). We consider a time-
average criterion and define

i = lim [lT LT E,{u(0) dz} (49)
and
. (7
N' = TIEI;{T L Eu{N(t)}dt} (50)

We focus primarily on the following economic structure: a unit reward is received at each
service completion time. In addition, each customer in the system (whether waiting or in
service) incurs holding costs at a rate ¢ > 0 per unit time. Our goal is to choose an admissible
control to maximize the long-term net rate of return, i.e.

Z%T(¢) = sup{Z“(c)} = sug(u“ — cNY). (51)

ueld u
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To make progress we need the following plausible assumptions about the input and output
capacity limits. In this assumption, the terms increasing and decreasing are used in the non-
strict sense:

(a) the sequence {\;, k = 0} of input capacity limits is decreasing;
(b) the sequence {fi;, k = 0} of output capacity limits is increasing concave, with fi,,, — i
— 0, k — oo.

Consider now this system evolving under a b-threshold policy, defined above. We denote
the associated performance measures x” and N°, and the corresponding objective Z’(c) =
u’ —eN®, b = 0. We also write ¢’ for the critical cost parameter, given by

"= — /N = N, b>1, (52)

with ¢ = 0. Under a b-threshold policy the system evolves as a birth—death process on states
0, . . ., b with state-dependent birth intensities X, 0 < i < b — 1 (and 0 otherwise), and death
intensities i;, | < i < b. The stationary distribution of this process is well known to be given by

i—1
m = Ky T A/ By, 0<i<bh, (53)
J=

where an empty product is 1 and K, is the required normalizing constant. We have

o>

I

b
:ub = p’iﬂ-?a Nb = Z iﬂ-?: b = 1. (54)
1 i=1

An expression for the critical cost parameter ¢” is easily recovered from equations (53) and (54).
It is straightforward to demonstrate that the following properties of the quantities intro-
duced above flow from the assumptions. See Nifio-Mora (1998) for details.

Lemma 2.
(a) The sequences {u”, b > 0} and {N”, b > 0} are both (strictly) increasing.

(b) The sequence {c¢’, b > 1} is positive and (strictly) decreasing with limit 0.
() ' —c"N“< 72", uel, b=1.

Note that lemma 2, part (c), is an assertion of the optimality of the »-threshold policy for the
critical cost parameter ¢”, b > 1. The achievable region analysis of the stochastic optim-
ization problem (51) for any ¢ > 0 now flows naturally. Many of the issues raised in the
introductory paragraph to this section are resolved as a by-product of the analysis.

We introduce the performance space

X ={(p", N), ueU}.
Following lemma 2, a natural candidate for X is the threshold polygon P given by
P={xe M x —c'x, < Zc"), for b > 1} (55)

which is depicted in Fig. 4. It is easy to show that the extreme points on the lower bound-
ary of P are (u’, N’), b > 1, namely the performances of the h-threshold policies. The
corresponding LP of interest is given by

Z" () = mgvx(xl —cXy). (56)
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Fig. 4. Threshold polygon P

In our main result we shall require the critical threshold function b*(-) given by
b*(¢) = min{b = 0; " < ¢}.
Theorem 7 (threshold optimality via the achievable region).

(@) Z"(c) = "9 — N9 ¢ > 0.

(b) XC P

(¢) Z"(c) = Z°""(c), ¢ > 0.

(d) The stochastic optimization problem (51) is solved by the b*(c)-threshold policy, ¢ > 0.
() X = P, the closure of P.

Outline proof. Part (a) follows by considering the dual LP of equation (56) through a
standard complementary slackness argument which makes use of the properties described in
lemma 2, parts (a) and (b).

Part (b) is an immediate consequence of lemma 2, part (c).

For part (c), it follows from part (b) that Z°?T(¢) < Z"*(c). However, from part (a), Z"*(c)
is achieved by the performance (1", N”©) of the b*(c)-threshold policy. This yields
Z"(¢) < Z°""(¢) and part (c) follows.

Part (d) is an immediate consequence of parts (a) and (c).

For part (e), plainly, from part (b) we have that X € P. To secure the reverse inclusion, the
reader is referred to Fig. 4 for assistance. Observe that any point on the lower boundary of P
is the performance of a policy which randomizes between (at most) two threshold policies.
Hence the lower boundary of P is contained in X. Note also that all points (0, N) are in X
where NV is a non-negative integer. To see this, consider a policy which guarantees that the
system enters the state in which N customers are present in finite time and which then freezes
the system by closing down both the input and the output. Plainly there is such a policy and
its performance is (0, N).

By appealing further to randomizations, we infer that the convex hull of the lower
boundary of P together with {(0, N), N = 0} is contained in X. We deduce that P C X and
part (e) follows. O
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We now broach the issue raised above of the minimum WIP level N;,(u) required to
achieve a target throughput level y. From theorem 7 we can write

Nmiu(,u') = min{N“; ﬂ'u =M, Uc u} (57)
= min{N; (u, N) € X}
= min{N; (u, N) € P}.

The minimization in equation (57) is achieved on the lower boundary of P. See Fig. 4.
Corollary 4 follows easily. We write x> = lim,_, . (1").

Corollary 4. N,,;,(u) is a piecewise linear function of p over the range [0, u*) given by

1

Nowin (1) = N + 5 (= 11"), W <p< ™, b=0.

We note that the above analysis allows us to consider a convex optimization problem which
generalizes equation (51) as follows. Let fand g be increasing, positive-valued functions with
continuous derivatives, with f concave and g convex. Now the reward corresponding to
policy u is given by f(u") — g(N"), yielding the stochastic optimization problem

Zeomvex = Subl?{f (1) — g(N)}. (58)

UE
Following theorem 7 we can reformulate problem (58) as the convex optimization problem
Zomex = max{f(x,) — g(x,)} (59)

with P given in equation (55). However, by standard results in convex optimization (see, for
example, chapter 2 in Bertsekas (1995)) we know that a necessary and sufficient condition for
the achievable throughput-WIP pair (u*, N*) to solve problem (59) is that it solves the LP

L[V ey
z {fwﬂ}_T?{“ fmﬂ“}' (60)

Theorem 8 can be shown to follow easily from theorem 7. In this result, the threshold level b*
is given by

/Nb+1)
b*:min{b}O; LIPS g( }
S ()

The quantity o* then solves the convex optimization problem

max [flop” + (1 = ") = glaN" + (1 = )N ],
a€|l,

Theorem 8 (optimal intensity with convex objective). The randomized policy that selects, at
time 0, the H*-threshold policy with probability a* and the (b* + 1)-threshold policy with
probability 1 — a* is optimal for control problem (58).

Consider now a general stochastic system with performance summarized by a throughput—
WIP pair (", N). The stochastic optimization problem of interest is equation (51) and the
general system continues to be furnished with a class of threshold policies whose associated
performances are (u”, L"), b > 0. Nifio-Mora (1998) describes what needs to be true in



774 M. Dacre, K. Glazebrook and J. Nifio-Mora

general of the set {(u’, N?), b > 0} for the achievable region to be a threshold polygon (as in
the above example) whose vertices are the performances of threshold policies. When these
conditions are met, threshold policies will be optimal for linear objectives and the minimum
WIP level N,,(1) will be piecewise linear, as in corollary 4.

6. Comments and plans for future work

We make no claim that the achievable region approach will always be the preferred option in
tackling stochastic optimization problems. It certainly appears to be a more than useful
addition to the toolkit. Direct comparisons with existing approaches are not straightforward.
In DP, value iteration and policy improvement algorithms are (virtually) routinely available
and there is nothing equivalent in the achievable region approach where plenty of creative
thinking may be involved in a succesful application of the ideas. That said, these are early
days and already certain approaches to the development of constraints on performance
variables seem to be especially productive. In multiclass queuing systems such as those of
Sections 3 and 4 where the performances are given by expectations taken with respect to a
stationary distribution, work decomposition laws such as equation (28) have played a central
role. Such laws have been developed by appeal to principles of flow conservation in the
systems concerned and also by the application of methods based on potential functions, as
here. See Glazebrook and Nino-Mora (1997).

All the examples discussed in this paper involve objectives expressed in terms of time
averages, but the approach is certainly not limited in its usefulness to such problems.
Branching bandit problems (including multiarmed bandits) with discounted costs have been
analysed by using these methods. There is no reason in principle why the approach could not
be applied to finite horizon problems.

Current plans for further development of the achievable region approach by the authors
and co-workers include work in the following three major areas.

6.1. Primal-dual approach

As mentioned at the end of Section 2, the methodology underlying the performance
guarantee in corollary 1 is derived from the primal-dual structure of LPs. The method works
by constructing both a heuristic solution to an appropriately defined (primal) LP related to
the stochastic optimization problem of interest and a feasible solution to the dual of a
relaxation of it. Our goal is to establish this approach as the central methodology in the
analysis of heuristic policies for the control of stochastic systems within achievable region
methodology both by extending its application to approximately GCL systems (like those
discussed in Section 3) and by introducing it as an analytical tool in new contexts, including
the intensity control problems of Section 5.

6.2. Load balancing

There is huge scope for further development of the work in Section 4. We shall mention just
two directions for such work: firstly, the delay-constrained problem of Ross and Yao (1991)
mentioned at the conclusion of Section 4 is both compelling from the perspective of
applications, but also a formidable technical challenge when placed in the context of GCL
systems. Secondly, in more complex systems than those discussed above for which the model
for each station only approximately satisfies GCLs then functions Z,, approximating the
optimal costs Z9"T will have the kind of convexity properties discussed in Section 4. A

m
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natural load balancing heuristic can be obtained by replacing Z9'" by Z,, in problem (41).
Further work will include the development of performance guarantees for such heuristic
approaches.

6.3. Extension of the approach to new areas

Strict priority policies for the service of customers in a queuing network may be unattractive
because of the heavy penalties that they impose on low priority jobs or customers. The latter
suffer not only large queues and response times but, perhaps more significantly, large
variances in these quantities. Natural formulations to ameliorate this would seek policies to
minimize the usual time-average linear holding cost rate subject to constraints on the
variance or to incorporate quadratic terms in the objective. We have begun work in this
challenging area and believe that the achievable region approach has an important role to
play. Achievable region methodology will also be introduced as an analytical tool for
developments of the models discussed in Section 5 to accommodate scheduling of the WIP in
addition to the control of the arrivals process.
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Discussion on the paper by Dacre, Glazebrook and Nifno-Mora

R. J. Gibbens (University of Cambridge)

The authors are to be congratulated on a stimulating and enjoyable account of the admissible region
approach to stochastic control problems. The family of problems tackled, i.e. multiclass server systems,
presents a significant challenge for analysis. Moreover, such systems are of increasing importance in the
practical modelling world, especially that of communication systems.

In today’s communication networks there is a pressing need to integrate varying traffic types such as
voice, data and video to share common network resources. Yet these traffic types have widely differing
statistical characteristics and correspond to services with widely differing requirements for quality or
performance as measured by individual packet loss or delay. Multiclass models naturally emerge from
these engineering designs and any insights given by a modelling analysis can produce significant benefits
to the overall system. Often these benefits will be in the form of simpler and hence cheaper mechanisms
as well, giving higher performance.

One topic that I should like to discuss is what if the performance space X is difficult to identify (step
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(a) of the achievable region approach)? Consider an example from an investigation of network routing
(for further details see Gibbens and Kelly (1995)). In this example, calls of class i arrive at the network
at rate v; (i € I). The resources in the network consist of links and let link 7 have a capacity of C; circuits.
A call of class i may be routed directly on link i or alternatively on a route r € R(i) (r is a subset of I and
write R = U,;; R(7)). An arriving call that is accepted holds a circuit on each of the links for the holding
period of the call. A call may only be assigned to a route r with at least one free circuit from each link
j € r. The call may also be rejected (or blocked), and it must be rejected if there are no routes with spare
capacity. The holding period of a call is exponentially distributed with unit mean and is unaffected by
the route used to carry the call. In networks with plenty of routing choices then X may be difficult to
identify. In such cases it is possible that good bounds on X may provide some insight into the structure
of optimal policies.
Here X € P where the polyhedron P is the set of vectors (f;, i € I) satisfying

fi=di+ > e <y iel
reR(i)
> e < Mi(d) iel

rai

for some d; > 0,ieland e, >0, r € R.

The function M,(d;) is the piecewise linear concave function which gives the maximal mean acceptance
rate of alternatively routed calls on link 7, subject to the requirement that the mean acceptance rate of
directly routed calls is at least ;. This is given by the solution of a one-dimensional Markov decision
problem and is of simple threshold type. Thus the expected number of calls carried per unit time is
bounded above by the solution to

max(z f,-)
iel
subject to

(fi,iel)eP.

How close is the bound? Hunt and Laws (1993) have established that for a symmetric network as the
number of nodes # increases then the proportion of calls lost under an optimal dynamic routing scheme
approaches the loss given by the bound. Moreover, the form of the optimal scheme is of a simple
threshold type (known as trunk reservation), corresponding to the solution of the one-dimensional
MDP giving the functions M(d). For asymmetric networks the bound can be calculated and has been
found to be approached by simple decentralized dynamic routing schemes (see Gibbens and Reichl
(1995)).

In conclusion, it is my pleasure and privilege to propose a vote of thanks to the authors.

P. Whittle (University of Cambridge)
It is a pleasure to have heard such a stimulating paper, and I congratulate the authors.

Many optimal service policies show a particular simplification under the steady state criterion of
average optimality, and it is just in this case that the achievable region—linear program (LP) approach
seems to be particularly natural.

As the authors make plain, the essential step in the approach is the determination of the achievable
region X. This seems to be surprisingly difficult, and the authors’ generalized conservation law character-
ization on pages 752 and 758 shows great ingenuity —all the more, for this characterization is far from
evident a priori.

I cannot escape the feeling that the determination of X should be more evident in these largely linear
cases, and also that behind every model for which an index policy is almost optimal lies a modified
model for which it is exactly optimal. In my treatment of the restless bandit problem (Whittle, 1988), to
which the authors refer, a very transparent LP formulation emerged once the problem had been relaxed
in an appropriate way. It turns out that, with such a relaxation, the problems that the authors consider
on pages 752 and 756 are just special cases of restless bandits, and that the Klimov indices can be
deduced in literally a couple of lines.

In what one might call the service relaxation the only constraint which is distinguished explicitly is the
restriction to M servers. This constraint is relaxed simply by costing service at a fixed rate v per unit
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time. The values of v which are critical if a customer of class j is to be served or not define the
generalized Gittins index v; for such a customer. The charge rate v is the Lagrange multiplier associated
with the prescription of the average number of servers which are active in equilibrium. The actual
number which are active will vary randomly in time, but the constraint is satisfied essentially and the
index policy is optimal in an asymptotic sense conjectured by Whittle (1988) and established by Weber
and Weiss (1990).

So, for example, consider the Klimov model treated on pages 756-761 of the paper: a multiclass
queuing model in which customers may depart on completion of service or may be recycled with a
possible change of class. Let us phrase the model in continuous time with a finite pool of customers,
who are engaged or disengaged according to whether they require service or not. Denote the engagement
(arrival) rate, disengagement (service) rate and cost rate for a prescribed customer of class j by A;, i; and
¢; respectively. The probability that an engaged customer of class j is recycled as one of class k on
completion of service is denoted pj., and the probability that on completion of service he is restored to
the pool as a customer of class k is denoted ¢j. If the matrices with these elements are denoted P and Q
then P+ Q is a stochastic matrix.

The relaxed process is still dynamic, and the optimality condition will be a dynamic programming
equation, but the effect of the relaxation is to decouple the customers. The dynamic programming
equation becomes simply

v = N(f; — g) = min {C,, i+ v—pifi+ z]‘: (Pifr + qjkgk)} (61)

where ~; is the minimal expected cost incurred per unit time by a customer of class j, f; is the marginal
increase in cost if a customer of class j is added to the queue and g; is the marginal increase in cost
if a customer of class j is added to the pool. The first and second equalities of equation (61) constitute
the dynamic programming equation in the cases where a customer of class j is disengaged or engaged
respectively.

If there is no recycling or change of type, so that P = 0 and Q = I, then it follows immediately from
equation (61) that the index values are v; = p;c;/A;, just the priority index for the well-known average
optimal policy. The use of this index is optimal in the case M = 1, it is close to optimal for larger M (in a
sense specified by the authors and others) and it is optimal in the doubly average sense (per unit of time
and per individual in the pool) if M and the pool are allowed to grow in proportion (Weber and Weiss,
1990).

In other cases equation (61) for the f;, g; and ~; is best solved by starting with v large and then
decreasing it to locate the break points (and so the index values ;). For v sufficiently large the solution
will be simply v; = A\(f; — g;) = ¢;, corresponding to the situation where nobody is served and the costs
of an entire community in the queue are accepted. (The National Health Service springs to mind.) As v
is decreased then the two bracketed quantities will become equal for some j at some point, the j-value
indicating the customer class of highest priority and the v-value the corresponding index. Actually, we
do not need to calculate the index; the order of j-values at which the break points occur as v decreases
gives the priority order of the customer classes.

In many cases changes of ‘class’ correspond simply to stages of processing for members of a given
true class i. The average cost ~y; will then be the same for all these stages and will be a function of 7 alone.
We could also allow class transitions while a customer is waiting in the queue, in such a way that his
priority increased as he waited. This would then allow customers of initially low priority a means of
escaping from the ‘queuing trap’ in reasonable time.

I have pleasure in seconding the motion that a vote of thanks be awarded.

The vote of thanks was passed by acclamation.

P. Ansell (University of Newcastle)

Consider the two-class M/M/1 queuing system with arrivals to queue k forming Poisson streams with
parameters ), kK = 1, 2, and having exponentially distributed service times with mean 1/, k =1, 2.
Under these conditions, the achievable region methodology finds that the optimal policy needed to
minimize a linear combination of average queue lengths, C = ¢; E(N,) + ¢, E(N,), is a strict priority
policy. Moreover, this will give highest priority to the customer class with the largest value of ¢,z (the
cu-rule).
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However, for many practical purposes, strict priority policies are unacceptable. This is because of the
large penalties that are imposed on the low priority jobs. These cause the low priority jobs to have large
expected queue lengths and response times, but, perhaps more importantly, large queue length variances.

A natural optimization problem which arises to mitigate this is

minimize ¢, E(N,) + ¢, E(N,),
var(N)) < v,
var(N,) < v,.
This leads to the study of two challenging problems, namely

(a) to obtain implementable and analytically tractable service policies which come close to minimiz-
ing the linear cost function and also satisfy the variance constraints and

(b) to obtain an exact characterization of the achievable region that contains both first and second
moments (or at least a relaxation of it).

The first of these problems is addressed by describing two classes of heuristic policies: a randomized
family and a threshold family. Both policy classes are characterized by a single parameter. To determine
the performance measures for these heuristic policies two methods, generating functions and the power
series algorithm, are employed. The power series algorithm is proving to be a powerful tool in the per-
formance analysis of the threshold policies.

The second of the above problems is addressed by using potential functions to create sets of linear
constraints and then to strengthen the characterization by incorporating semidefinite constraints. (Note
that this is restricted to problems involving second-moment constraints instead of variance constraints.)
This leads to a semidefinite programming problem which can be solved by using one of several packages
available. See Ansell et al. (1999).

So far the results indicate that the family of threshold policies does well in comparison with the more
commonly studied family of randomized policies. In many cases they come close to the bound obtained
by the semidefinite programming formulation. Work in progress attempts to improve the tightness of
the achievable region relaxation.

John Bather (University of Sussex, Brighton)

Statistics now deals with very large data sets and probability is applied to models of increasing com-
plexity. Both these developments are associated with computing and information technology. This
paper is welcome because it is concerned with important and difficult problems in stochastic optimiza-
tion. My first reaction was that it would be too technical to follow, because I am not familiar with the
background, but the authors have done their best to explain the principles of their approach and I found
this very helpful.

The first example in Section 2 illustrates the possibilities and also some limitations of the approach.
We are, in effect, minimizing a linear cost function on a convex set, so the solution corresponds to an
extreme point. This means that the optimal policy does not depend on the state of the system, as
represented by the numbers of customers N,(¢) and N,(z). Presumably this is a consequence of allowing
a pre-emptive switching of service, but it is not clear what happens otherwise.

The general queuing model of Section 3 shows that, under the generalized conservation law
conditions, index policies are useful: either they are optimal (M = 1 server) or asymptotically optimal
(M = 2 servers). It is remarkable how the validity of decision procedures based on indices has been
extended since Gittins (1979). There are limitations: the indices are not usually derived from simple
intuitive rules; they involve substantial computations. The exact form is also sensitive to the choice of
model parameters, which makes me sceptical of properties like asymptotic optimality.

In Section 6, the authors note that there is nothing in the achievable region approach which is
equivalent to the value iteration and policy improvement algorithms used in dynamic programming.
Perhaps some kind of policy improvement may be feasible. This would require an investigation of
relative value functions representing the advantage or disadvantage of one particular state of the system
relative to another, under a given control procedure and the equilibrium distribution generated by it.
Roughly speaking, local optimality with respect to a relative value function can be used to establish
global optimality of the corresponding control procedure. Similarly, local suboptimality may suggest
local improvements which lead to a global improvement in the policy.
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Finally, I hope that this paper will stimulate as much further research as Gittins (1979) did 20 years
ago.

E. J. Collins (University of Bristol)

The authors are to be congratulated on the clarity with which they have enunciated the achievable
region approach and the success that they and their co-workers have had in using the concept of
generalized conservation laws (GCLs) to unify results and methodology for various classes of stochastic
optimization problems. It will be interesting to see how far the approach can be extended to other
structured problems, and I wonder whether the authors can give any general principles for identifying
and constructing appropriate GCLs.

However, as their intensity control example shows, the achievable region approach is not limited to
cases where GCLs apply. As they say, in principle the approach can be applied to finite horizon
problems or more generally to replace formulations in the space of state—action frequencies with simpler
analyses in the space of natural performance variables.

For example, Collins and McNamara (1998) used an achievable region approach to analyse a class of
finite horizon Markov decision processes with non-standard reward structures, which arise naturally in
the context of behavioural ecology (McNamara et al., 1995). Standard dynamic programming (DP)
methods are not directly applicable because of the reward structure and a non-linear programming
formulation in terms of state—action frequencies suffers from the problem of large dimensionality
referred to above. Instead, each finite horizon policy 7 is associated with a system performance vector
x", whose components x" (i) represent the probability that the process is in state i at final time 7 and the
overall reward is taken to be a strictly concave function ¢ of the final distribution x. The performance
space can be characterized as a convex polytope X, each of whose vertices corresponds to the final
distribution associated with some (non-stationary) Markov deterministic policy, and the optimal per-
formance vector can be characterized implicitly by noting that x* maximizes ¢(x) if and only if

Vo(x*)x < Vo(x*)x* for all x € X.

The maximization problem can then be solved iteratively, without explicitly determining X, by solving a
sequence of DPs in which the finite horizon policy solving each iteration itself determines the objective
function for the next iteration, and the optimal policy is in general a randomized policy of much higher
dimension than the performance space. The examples presented by the authors appear to rely on the
dimension of the optimal policy being no larger than that of the performance space, and 1 wonder
whether they have any systematic way of extending their method to this more general case.

John Gittins (University of Oxford)

It is exciting to witness the early stages of an important new approach to a class of problems with which
I am very familiar. As the authors say, it is much too early to make an informed judgment on how
far the achievable region approach will take us. I should like to ask whether there seems to be any
possibility of progress with two problems that I wrestled with a few years ago, before this approach was
well known.

Problem 1: parallel servers
As the authors point out, Glazebrook and Garbe (1999) showed that in general an index policy
performs well, particularly with heavy traffic. There are also circumstances in which an index policy is
optimal, e.g. one class of customers, monotone completion rates (see Weber (1982)) and deterministic
processing times, no arrival process and identical time costs (see Gittins (1989)).

Are there likely to be other circumstances for which an exact optimal solution may now be obtained?

Problem 2: index values

Does the new approach lead to new algorithms which may be used to calculate index values? I have in
mind particularly the problems of multipopulation random sampling which are discussed in chapters 6
and 7 of Gittins (1989). The use of duality ideas, associated with achievable regions, is a fruitful source
of effective algorithms in linear programming and combinatorial optimization, so we might hope for
some progress here.

M. Zervos (University of Newcastle)
One of the methods to study optimal control problems is via mathematical programming on suitable
spaces. Among the first results to be established by means of such an approach are Pontryagin’s
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maximum principle (see for example Fleming and Rishel (1975)) and the solution of the general optimal
stopping problem by Snell (1952).

The paper is concerned with ramifications of such an approach to a class of stochastic optimization
problems. To fix our ideas, consider the ‘stationary’ stochastic optimization problem

min [ E{g(Z")}], (62)

where Z" is the state of a controlled system in a steady state associated with admissible control u.
Problem (62) is equivalent to
min(g, p"), (63)
ueld
where p = Z"“(P). Thus, as long as we can express the constraint that Z" is the state of the system under
control u € U as a set of linear constraints on the measures p“ (this is the challenging part), we can
reformulate the original problem as a linear programming problem. Note that this is infinite dimen-
sional. However, in the special case where g(z) = z, the problem’s objective function is expressed in
terms of only the first moment of p". This is the case which pertains in the paper: control u is associated
with performance z" = E(Z").

With regard to their applicability, mathematical programming approaches to stochastic control have
two difficulties. First, for a general choice of g, they give rise to infinite dimensional problems, which
might lead to the conclusion that they are limited as far as general applications are concerned. Second,
they require the additional effort of identifying a control which is associated with the solution of the
resulting linear program problems, namely an optimal control. In view of major results like those
mentioned in the first paragraph, these difficulties cannot be considered a criticism. Also, as far as the
first is concerned, note that ‘almost linear’ models are related to a large class of very important
applications, including those analysed in the paper. However, the analysis of large or infinite dimen-
sional problems by means of the achievable region approach with appropriate relaxations presents a
challenging issue.

As a conclusion, the method presented in the paper can be incorporated into a wider theory as an
integral part. However, judging from the range of results that it has already yielded, it appears to be a
most promising and important tool.

The following contributions were received in writing after the meeting.

N. Bauerle (University of Ulm)

Optimal control of stochastic queuing systems has always been a challenging task. In recent years new
methods have been developed for this problem — one of the most prominent is the ‘achievable region
approach’ which has been pursued by the authors. A striking thing about all these approaches is that the
stochastics of the problem do not play an important role in the analysis. Indeed, only the first moments
of the relevant distributions seem to be significant. The reason may be the objective function, which is
often taken to be linear.

In particular the achievable region approach is very well suited for average cost problems with linear
cost functionals. The more complicated the objective function becomes, stressing the stochastic nature
of the problem, the less easy it is to apply the ideas. This is also due to the ‘creative thinking which may
be involved in a successful application of the ideas’ (p. 774). Another critical point in the philosophy of
the achievable region approach is to emphasize the role of bench-mark policies such as index policies
and switching policies in such a way as to characterize them as extreme policies which can be shown to
be optimal for certain objectives. The application of this method has until now been restricted to models
where the importance of these policies has already been known. However, many scheduling problems
remain for which these known simple policies do not perform well. I wonder whether the achievable
region approach can give some hints for finding new policies for these networks which are still simple
and have a good performance.

However, the two big advantages of the achievable region approach in my eyes are the following.
First, as demonstrated in Section 3, it is easy to make statements about how far away from the optimum
simple policies like index policies are (see corollary 1). Second, further constraints on the system (like
those discussed on p. 769) can easily be handled with this approach. In particular, this gives rise to new
problems which have not been investigated yet. In this spirit, the achievable region approach is certainly
a valuable method which should be pursued further.
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John R. Birge (University of Michigan, Ann Arbor)

The optimization of stochastic systems is one of the most challenging yet practical problems in applied
mathematics. The production, telecommunication, power, transportation, health and financial sectors
all rely on decisions that seek the optimum performance in the face of significant uncertainties. This
paper describes an innovative approach to these problems by identifying the set of characteristics that
can be achieved by the system and by then optimizing over that region. This approach has great
potential for applications in other areas but still faces challenges for applications to systems with
transient or short-term characteristics.

The achievable region approach has some antecedents in other problem domains. For example,
Pliska (1986) examined an optimal portfolio problem over time. The model is used to find investments
at time ¢ of 6, in a risky portfolio and 1 — 6, in a risk-free asset to maximize the expected value of the
terminal wealth,

Uit = | ulx). w1 doe)
where w € Q for a probability space (2, F, P), and where Q is the risk neutral or reference measure
equivalent to P.

Pliska (1986) used the theory of complete markets established in Harrison and Pliska (1981) that
the set of all attainable wealths X1 are those that satisfy Ey(X1) = 0 (or some other initial wealth). He
then considered this terminal objective and found the final distribution of the attainable wealth that
maximizes this objective. After the final wealth distribution is determined, Pliska showed how to obtain
a policy that achieves this distribution.

Dacre, Glazebrook and Niflo-Mora show that many areas beyond finance may benefit from this
approach. The problems so far, however, have considered only a single agent. Additional applications
in distributed control or game theoretic models might be possible by using general equilibrium prop-
erties to define the achievable region. The results have implications for the rapidly emerging markets in
communication, transportation and power.

The limitation of this approach is the ability to define the achievable region. The paper suggests that
finite time horizons present no inherent difficulties but the problem in these situations is that transient
characteristics often dominate and make the identification of an achievable region possible only after
identifying a policy for each point in time. Such phenomena are in fact the domain of both the dynamic-
programming-based approaches mentioned in the paper and stochastic programming approaches (as
in, for example, Birge and Louveaux (1997)) that may be required when policies do not have a simple
threshold or decision rule structure.

Esther Frostig and Gideon Weiss (University of Haifa)

The paper extends the achievable region approach to the derivation of approximately optimal solutions
for stochastic optimization problems, by the use of approximate generalized conservation laws (GCLs).
It illustrates the tremendous potential of this approach to solve hitherto intractable problems, and in
particular, in Section 3, it provides the first proof of the asymptotic optimality of Klimov’s policy for
parallel servers.

In hindsight the achievable region approach with approximate GCL can be used to derive the
performance of Smith’s rule for scheduling a batch of n jobs on M machines, as given in Weiss (1992).
Consider a finite batch of jobs j € £= {1, 2, . . ., n} with processing times X; and holding costs w; per
unit time. For a given scheduling policy u let (CY, C5, . . ., C;,) be the completion times of the jobs, and
consider these as the performance vector of the schedule. The following approximate GCL follows from
Weiss (1992) (see also Mohring et al. (1998)):

S X, Cr = b(S) SCE,
keS
S X, CY < B(S) + D(S) SCE wS— S,
keS
b(E) < 3 X, Ck < b(E) + ©(E), (64)
keE

where
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Here ®(S) is obtained as an upper bound on DY which is the sample variance of the times at which the
M machines fall idle at the completion of the jobs in S.

Note that these quantities are defined for a finite sample path, rather than in terms of a steady state
vector of expectations. Also, because there is no feed-back of jobs, Vf is simply X;.

For the objective

1 n
- > wC;
nig

the greedy algorithm then yields a prioritized renumbering of the jobs w,/X, = ... = w; /X, (this is
Smith’s or the cu-rule). Let Z% and Z°"T be the values of the objective associated with Smith’s rule and
with the optimal policy respectively. Then Z°°" = O(n), whereas

W& Wi W
(2
Y TN\ T

, 1
max (X}) = 0<g)~ (66)

1
76 _ 70PT < - ®(S,)

_Lw, (1)
“nX, M

The 1 + O(1/n*) performance ratio for batch indicates that Smith’s rule is optimal except at the end of
the schedule and the end effect is of the order 1/n per job.

Drawing an analogy with the case of scheduling an arrival stream of jobs with traffic intensity
0 < p < 1, we might think that for each busy period the optimal holding costs per job would be of the
order 1/(1 — p), whereas the suboptimality per job would be of the order 1 — p. This would be in
striking contrast with the order 1 suboptimality per job (or equivalently per unit time) which is obtained
in Section 3. Further research is needed to discover whether these much stronger asymptotic optimality
results indeed hold.

Colin McDiarmid (University of Oxford)

The mathematics of operational research contains various streams of endeavour, with different levels of
interaction, which can create the unfortunate impression that it is not really a coherent subject. Two
thriving and hitherto rather separate streams among these concern mathematical programming and
the optimal control of stochastic systems. Methods and ideas from the former are imported in the
‘achievable region’ approach to the latter. It is pleasing and exciting to see these imports casting new
light. The present contribution shows that this light is very powerful for certain classes of stochastic
control problem and further indicates that the illumination may in the future extend more widely.

Rolf H. Mohring and Marc Uetz (Technische Universitdt Berlin) and Andreas S. Schulz (Massachusetts
Institute of Technology, Cambridge)

The paper is an important recent enhancement of our ability to design and analyse policies for prob-
lems in queuing theory and stochastic control. The approach of using a relaxation of the performance
space to derive controls with good performance is well established in deterministic optimization. It has
evolved in recent years into a promising tool in stochastic optimization as well.

Most commonly used are linear programming (LP) relaxations, and, especially in the context
addressed by the authors, generalizations of extended polymatroids. The latter give immediate rise to
index policies as was nicely illustrated in Bertsimas and Nifno-Mora (1996) for certain multiarmed
bandit problems. The current climax of the approach discussed is its use to prove asymptotic optimality
of a Gittins index policy for parallel servers (Section 3).

The ‘achievable region approach’ is closely related to the pre-existing paradigm of LP-based approx-
imation algorithms. More specifically, work by for example Wolsey (1985), Queyranne (1993), Hall et
al. (1997) and Mohring et al. (1998) has impressively revealed the potential of LP formulations in



784 Discussion on the Paper by Dacre, Glazebrook and Nifio-Mora

natural date variables to derive exact and approximate algorithms and characterizations of the space of
feasible solutions in deterministic and stochastic scheduling.

In these settings the number of jobs is fixed, and we are interested in constant relative performance
guarantees rather than asymptotic optimality. For the problem of minimizing the weighted total
expected completion time X w; E(C;) of n jobs on m identical machines with job processing times p;
fulfilling V(p;) < E(p_,)z, we have provided p-approximation algorithms with p =2 —1/m and p =
4 — 1/m for the cases without and with release dates respectively (Mohring et al., 1998). More com-
plicated approximation ratios p apply to general distributions.

During a visit by Glazebrook, we discussed our results and their relationship to the achievable region
approach. He pointed out that our bounds yield asymptotic optimality in the case without release dates,
and he also derived the aforementioned approximation ratio within the achievable region paradigm
of approximate generalized conservation laws (GCLs). Subsequently, G. Weiss gave an alternative
derivation of our inequalities from his analysis of Smith’s rule (Weiss, 1992).

An important question concerns the handling of additional side-constraints such as precedence
relationships among jobs. In this case, GCLs do not apply, but our LP-based approach still yields
approximate results for the single-machine case; the case of m machines remains an interesting problem.

This paper demonstrates the power and applicability of the achievable region approach to queuing
and other stochastic systems. Motivated by the success of LP-based approximations in combinatorial
optimization in general, we wonder whether the LP-based paradigm that utilizes arbitrary LPs as
relaxations of the achievable region will lead to progress in stochastic systems other than scheduling.

R. W. Owen (University of Essex, Colchester) and M. M. Gregorio-Dominguez (Instituto Tecnologico
Autonomo de Mexico, Mexico City)
This paper is welcome not only for its novel uses of the achievable region approach but also for its clear
exposition of the key concepts and features of the approach.

The results in expressions (15) and (35) may be combined to obtain a bound on the suboptimality of a
Gittins index policy as a proportion of the optimum:

Z”G _ ZOPT - ) Zu(_‘, _ ZD €
7 OPT S min 7D > ZuG — ¢

where N
€= ; Q{S(HHNG; — G-

When an index policy is optimal, ® = 0 and hence the bound will be tight.

We consider a single-machine scheduling problem in which a sequence-dependent switching time C;;
(with E(C}j) = ¢;;) is required to switch from job i to job j. The objective is to minimize the flow time, i.e.
the sum of the completion times of all N jobs. An index policy is optimal for this problem when either all
switching times are 0 or when the conditions in theorem 9 are satisfied. (Further details are given in
Gregorio-Dominguez and Owen (1997).)

Theorem 9. If the jobs are numbered in increasing order of their expected processing times and the
mean values of the corresponding switching times satisfy

(@) c; < ¢y for j <k, Vi,
(b) ¢ < ¢ for j < k <iand
(©) ¢; < ¢ fori<y,

then the policy which orders the jobs in increasing order of their expected processing times minimizes in
expectation the flow time in the class of non-pre-emptive policies.

Fig. 5 compares the exact percentage suboptimality with the bound on the percentage suboptimality
given above. The various parts display the consequences of violating various combinations of con-
ditions (a)—(c) in theorem 9.

As expected, the bound is tight when all conditions are satisfied and when all the processing times and
switching times are identical (in which case any non-pre-emptive policy is optimal). Otherwise, the
bound is generally far from tight.

The poor performance of the bound is put in perspective by observing that the flow time model with
switching times is a time-dependent travelling salesman problem — an extreme problem on which to test
any methodology.
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J. Preater (Keele University)

The authors have given an illuminating account of the achievable region methodology. The approach is
a most welcome relief from the strait-jacket of dynamic programming recursions: it will be interesting to
see how many traditional dynamic programming areas will succumb to it.

One plausible forbear of the achievable region approach is multicriteria linear programming, where
one considers, at least conceptually, the space of potential objective function vectors before reaching a
consensus. It is apt therefore that a by-product of the new approach is that multicriteria versions of the
problems are thereby made more transparent.

Ulrich Rieder (University of Ulm)

The control of stochastic and dynamic systems is a mathematically challenging problem. Conventional
approaches are based on stochastic dynamic programming techniques. In recent years the ‘achievable
region approach’ has been developed to formulate stochastic control problems (predominantly queuing
systems) as mathematical programming problems. The vectors of performance variables are typically
expectations. Often only the first moments of the relevant distributions play a role.

The authors have done some important work on the development of powerful new methodologies to
analyse a range of stochastic optimization problems. In particular, the results for the difficult M-server
queuing system are very interesting. The work is important because of its potential usefulness in many
further applications, especially in stochastic dynamic optimization problems with side-constraints (as
discussed at the end of Section 4). Indeed, knowing approximate generalized conservation laws (like
those in Section 3) may give performance guarantees for simple bench-mark policies. Bounds for simple
policies such as index policies and threshold policies are easily derived by the achievable region
approach.

All the applications in the paper involve linear objectives expressed in terms of time averages. No
statistics other than the first moments (taken with respect to the stationary distribution) define the linear
programs. These assumptions and properties seem to be significant for the successful application of the
achievable region approach. I wonder whether this approach could be extended to even more general
classes of stochastic dynamic optimization problems, e.g. decentralized stochastic control problems or
finite horizon portfolio problems.

Shaler Stidham, Jr (University of North Carolina, Chapel Hill)
The authors have set for themselves two goals:

(a) to provide a concise and widely accessible survey of the achievable region approach and
(b) to present new methods and results which they, among other researchers, have developed in
recent years.

They have achieved both goals in this well-crafted paper, which should become a standard reference on
the subject.

Although the ideas underlying the achievable region approach are simple, extracting the key concepts
from the literature and presenting them in a clear and cogent manner, with simple but accurate nota-
tion, is not a trivial task. The authors are to be commended for making it look easy in Section 2.

The remaining sections of the paper cover recent extensions of the achievable region approach by
the authors and colleagues. Section 5 contains results that I found particularly interesting. Previous
research has applied the achievable region approach primarily to scheduling problems. The authors
present preliminary results on using the achievable region approach to prove the optimality of a
threshold policy for setting optimal arrival and service rates in a queuing facility. Previous research
(including my own) on this topic has typically used inductive arguments based on a dynamic
programming formulation of the problem. By contrast, the achievable region approach considers the
vector of the two performance measures — throughput and inventory — in essentially the same way that
the vector of performance measures in different classes is considered in scheduling problems. Although
the achievable region approach apparently has not yet solved any new problems in this area, it is none-
the-less a potentially useful addition to the analyst’s toolkit.

The authors point out that, although most of the applications of the achievable region approach have
been to problems in which the performance measures are steady state expectations, ‘the approach is
certainly not limited in its usefulness to such problems’. Recently we have shown that strong con-
servation laws hold for many problems on a finite time, sample path basis (Green and Stidham, 1999).
Applications include scheduling in multiclass stochastic fluid systems and input—output systems in
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which the cumulative inputs and/or the cumulative (potential) output are mixtures of continuous and
jump processes (e.g. Levy processes). Our approach exploits recent results concerning the solution to the
Skorohod problem for such systems. We are currently extending these results to systems driven by a
Brownian netput process and to multiclass networks.

Lyn Thomas (University of Edinburgh)

The authors are to be congratulated for showing so clearly how the mathematical programming
approach to complex service systems can exploit the generalized conservation laws that the optimal
operating strategies for such systems must satisfy. Although dynamic programming (DP) allows more
flexibility in the form of the objective function, it is true that DP finds it difficult to exploit the fact that
the optimal solution must be in such a limited class of policies.

However, I would like to comment on the potential for this mathematical programming approach to
be used for game theory models of such queuing systems. The paper assumes that there is some overall
controller of the queue who is interested in minimizing the total cost of running the system. An
alternative problem is that the customers in the queue are all individual decision makers who make their
own choices about how they move through the system and which servers they choose according to what
is best for them. This is an n-person game and I am struck that the convex polyhedron P defined in
equation (13) is exactly the definition for the core of a game with characteristic function 5(S). The
corresponding game is not sensible without the introduction of benefits to the customers of passing
through the system, but it does seem that the mathematical programming approach would fit in very
well with the standard ways of solving such games. This may allow us to extend this work to deal with
versions where each customer is an individually rational decision maker in much the same way as the
work of Tijs (1992) and Feltkamp (1995) has extended deterministic scheduling problems. In their
intriguing extensions of scheduling, owners of each job being scheduled are co-operating and competing
to maximize their own individual benefits.

David D. Yao (Columbia University, New York)

The paper has done an excellent job in presenting an overview of the so-called ‘achievable region
approach’ to a class of stochastic scheduling or control problems that are usually solved by dynamic
programming techniques.

The starting-point of the approach is to characterize the performance space of a system under control
by a set of linear constraints, a total of 2" of them, n being the number of job classes. In general, even
optimizing a linear objective function over such a feasible space is intractable (because of the expo-
nential number of constraints).

The crucial point here is that certain terms on the right-hand side of the constraints could be ignored,
resulting in a bound and, even better, a structure that is known as an extended polymatroid (EP). And,
optimizing a linear objective over an EP is solvable by a greedy algorithm, which directly yields the
Gittins indices, which, in turn, translate into a priority rule. Furthermore, relaxing the constraints
creates a duality gap, which provides a natural bound for the performance, in terms of the gap between
the objective value under the priority rule and the objective value under the optimal policy.

However, we still do not know what is the optimal solution, in terms of the control policy, to the
original problem. In fact, we do not even know whether the problem is polynomially solvable —
polynomial in #, that is. It would be worthwhile to carry out numerical investigations along these lines
using interior point techniques, which are mostly primal-dual based. The class of problems with an EP
or an EP-like structure often has a rich duality in the sense that the dual variables yield the Gittins
indices. In this regard, they appear to be ideal candidates for interior point techniques.

One might argue that the optimal control to the original problem might not be of much interest, as it
will not be as ‘clean’ as the priority rule that is at once optimal to the relaxed problem and ‘close’ to the
optimal performance via an error bound. However, in applications, an interior point, which can be
realized by policies such as Kleinrock’s delay cost schedules, may have far superior variance properties
than the priority rule has.

The connection to directional convexity is another interesting point that may lead to other results
and applications. For instance, instead of splitting incoming traffic as in the load balancing problem, we
may be able to obtain results regarding the correlation between arrivals. Specifically, use directional
convexity as a measure for the ‘strength’ of correlation, and investigate what is the effect on the queuing
performance.
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The authors replied later, in writing, as follows.

We are delighted that the paper has provoked so many thoughtful responses and are grateful to the
discussants for their insights and stimulus to further reflection and work. It is not realistic to respond to
all the points raised. We have tried to focus on some of the main themes.

Complex problems and relaxations of achievable region X

Dr Gibbens explicitly and other discussants by implication raise the issue of problems in which the
achievable region X is difficult to identify. Certainly, for many complex models, it will be an unrealistic
goal to characterize X fully by means of explicit linear or convex constraints. This is precisely the
situation in the more mature mathematical programming approach to combinatorial optimization,
which had led researchers to develop fruitful solution approaches based on strong yet tractable linear or
convex programming relaxations. See the contribution by Professor Mohring, Professor Schulz and
Mr Uetz. A few studies, including the parallel server model of Section 3, and the example discussed by
Dr Gibbens, support the idea that relatively simple relaxations of X can yield provably good heuristic
policies. Further, in at least two problem domains of which we are aware (namely multiclass queuing
networks and restless bandits) we have prescriptions for developing sequences of ever more complex yet
tight relaxations P; 2 P, 2 ... 2 X. See Bertsimas et al. (1995) and Bertsimas and Nifio-Mora (1999).
In these cases the order of an effective relaxation may yield insights into the complexity of the problem.

Before passing on to other related issues, we pause to note that it is not necessary to identify an exact
X in situations where optimization over relaxation P 2 X yields an optimal solution which can be
shown to be in X. Theorem 7 exemplifies this in that an optimal policy is obtained (theorem 7, part (d))
before X is identified (theorem 7, part (e)). As indicated in Professor Stidham’s comments, Green and
Stidham (1998) utilize this fact in work which more fully exploits the sample path nature of the
argument in Section 2 which yields expressions (4)—(6).

Professor Whittle’s stimulating contribution raises the important question of what we look for in a
relaxation. As implied above, we wish ideally to look to a relaxation to provide both a policy and a
performance guarantee in the form of a suboptimality bound for it. Although the development of
general approaches to the production of policies from relaxations is without doubt an important
research priority, producing the heuristic policy for the model in Section 3 is not the difficult part.
Although Professor Whittle’s relaxation produces the index policy quite easily, so does an arguably
simpler relaxed model in which a single server works at rate M. So far as we know, Professor Whittle’s
‘restless bandit’ relaxation has yet to yield closed form performance guarantees for the M-server
problem with M fixed. It is the production of effective performance guarantees for the index policy
which for us is the major achievement of Section 3, rather than the heavy traffic optimality result which
is a rather easy consequence. In this respect, we have some sympathy with Professor Bather’s comments
on asymptotic optimality. That said, we should underline the fact that the asymptotic optimality result
to which Professor Whittle refers is substantially different from ours. For us, the assumption that M
remains fixed is central.

Tightness of performance guarantees

The issue of the tightness of the performance guarantees for the Gittins index policy discussed in Section
3 is raised by several discussants (Dr Frostig, Professor Weiss, Dr Owen and Dr Gregorio-Dominguez).
We state in the paper that we have not aimed at producing the best possible analysis, but the comments
of the discussants now suggest that we should give more information about what is possible. Full details
may be found in Glazebrook (1999). Rewrite equation (28) in the form

> Vixi = b(S) + @(S) (67)

ieS

where ®“(S) is the sum of the first and third terms on the right-hand side. Introduce the set functions @
and ®*, defined as

Dy (S) = irglg{dﬂ(S)}, SCE, (68)
and
D*(S) = sup {D“(S)}, S CE, (69)
u:§— S¢

where the supremum in equation (69) is over controls which give S priority over S°. We can show that
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The performance guarantees described in inequality (35) and corollary 1 (and we assume those alluded
to by our discussants) are obtained as upper bounds on inequality (72). The bound in inequality (72) is
usually more tractable analytically than expressions (70) or (71) but may be much less tight. In the
example described by Dr Owen and Dr Gregorio-Dominguez, the class of policies is finite and the exact
suboptimality can easily be recovered from equation (70). Given that they in effect appear to be
assessing Smith’s rule as a policy for a travelling salesman type of problem, we are pleasantly surprised
by evidence provided by the discussants of the quality of the guarantee based on inequality (72). The
issues raised in the final paragraph of the contribution by Dr Frostig and Professor Weiss may depend
for their resolution on an ability to exploit expressions (70) and (71) effectively.

On a related matter, Dr Gittins raises the issue of known optimality results for parallel server
problems. A few such results have emerged from the achievable region approach (see Shanthikumar and
Yao (1992)). It would be an interesting challenge to determine whether Weber’s (1982) results for flow
time could emerge from an analysis which first established a work decomposition result as in equation
(67) and then proceeded to demonstrate that the quantity on the right-hand side of equation (70) is 0.

Scope of the achievable region approach

Our rather tentative discussion of the scope of the achievable region approach in Section 6 has elicited
a range of comments, as we hoped it would. Several discussants (including Dr Zervos, Dr Biuerle and
Professor Rieder) suggest that the approach may be limited in its usefulness outside the class of
stochastic optimization problems involving time averages and/or linear objectives, or at least may be at
its most natural there. We are not willing to be too pessimistic just yet. In addition to the work already
published concerning successful applications of the achievable region approach to models with a
discounted cost criterion (see, for example Bertsimas and Nifio-Mora (1996, 1999) and Glazebrook and
Garbe (1998)) and another study by Bhattacharya et al. (1995) whose prime focus is the maximization
of a concave function of a performance measure related to a multiclass M/GI/1-queue with Bernoulli
feed-back, two of the discussants (Dr Collins and Professor Stidham) helpfully point to the effective
application of the achievable region approach to two very different problem areas, neither of which is
concerned with steady state expectations. Interestingly, both of these concern problems with finite
horizons—an area about which Professor Birge expresses some concerns. On more general finite
horizon problems, we are encouraged by the work of Kumar and Meyn (1996) who showed that it may
be possible to formulate a finite time linear programming relaxation which provides transient bounds on
system performance from any initial condition.

Of course it would be foolish to pretend that there are not very substantial challenges ahead in
extending the scope of the achievable region approach. Indeed, there are many very difficult problems to
be solved which do involve time averages and linear objectives. One such is the scheduling control of
multiclass queuing networks. It may be that the prime role of the approach here will ultimately be to
provide bounds on achievable performance against which heuristic policies developed by other means
may be assessed. Some modest progress to this end has already been made but a further development of
our capacity to generate constraints on performance measures for complex processes is required.

So far as non-linear problems are concerned, Section 5 shows that the achievable region approach is
well suited to deal with objectives which are non-linear in performance measures (expectations). In the
context of the simple example discussed in Section 2, it is straightforward to replace the linear objective
in equation (8) by ¢(x,, x,) for some general concave ¢. The optimizing performance will usually be a
non-extreme point of X, realizable by a range of controls. These controls will plainly all share the same
profile of expectations {E,(N,), E,(N,)} but may have highly variable higher moment behaviour. In
particular some policies will have much better behaviour than others from the perspective of {var,(N,),
var,(N,)}. Such issues are raised by Dr Ansell and alluded to by Professor Yao. Motivated by such
considerations, it seems to us that a more natural but considerably more formidable challenge concerns
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the optimization of the expectation of a non-linear function of the underlying process. See Dr Zervos’s
comments. The solution of the problem described by Dr Ansell can be regarded as a modest first step in
this direction. Important research priorities highlighted by this work include

(a) an enhancement of the current approach based on polynomial potential functions for the devel-
opment of constraints on performances which are higher order (and mixed) moments for queuing
systems and

(b) the extension of semidefinite programming methodology to problems with non-linear objectives
and/or constraints.

Miscellanea
We thought that it would assist readers if we clarified and/or commented on a few additional issues
raised in the discussion.

(a) On Professor Bather’s point, the assumption of pre-emptive controls in the example of Section 2
simplifies the argument at one or two points but is not critical. The effect of a restriction to non-
pre-emptive policies would be to leave equation (4) unchanged, while increasing the right-hand
sides of inequalities (5) and (6). The resulting achievable region is a line segment P’ which is that
part of P (see Fig. 1) which lies between two points 4" and B’ which represent the performan-
ces corresponding to non-pre-emptive implementations of 1 — 2 and 2 — 1 respectively. The
resulting optimal control is a non-pre-emptive implementation of the cu-rule.

(b) Dr Collins asks for general principles for identifying and constructing generalized conservation
laws. The main approaches used to date have been

(1) the deployment of sample path work conservation arguments (as in the example of Section 2),
(if) the utilization of potential function techniques (as in Section 3) and
(iii) arguments based on flow conservation in queuing systems.

We understand least about the third of these approaches. In many ways, it seems more natural
than approach (ii) but is challenging technically.

(c) We are grateful to Professor Birge and Professor Thomas for the suggestion that applications of
the approach to distributed control and game theory models may be possible.

(d) In answer to Dr Gittins’s query regarding algorithms for computing indices for his multipop-
ulation random sampling models, the approach described in the paper would involve firstly
constructing a finite state approximation to the relevant process (with given initial state) rather as
in equation (6.13) and following text of Gittins (1989). An application of the adaptive greedy
algorithm would then coincide with the ‘largest to smallest” algorithm of Robinson (1982).

(e) We are grateful to Professor Yao for his suggestion regarding interior point methods. However,
in the particular case of our parallel server model in Section 3 our computational experience
suggests that the steady state distributions of the queue length process under an optimal control
and under the index policy are usually so very close that they are unlikely to have substantially
different variance properties.
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