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Abstract We propose a branch-and-bound algorithm for resource-constrained

project scheduling where any two of jobs can be linked by arbitrary minimal and

maximal time lags. The jobs have to be scheduled non-preemptively, and while in

process, they require several limited resources. The objective is to find a feasible

schedule which minimizes the project makespan. Different branch-and-bound al-

gorithms have been previously proposed – either based on constraint propagation

techniques, or based on the idea to branch over so-called resource conflicts which

are resolved by introducing additional precedence constraints. Our approach also

follows the latter principle. The new idea is to resolve resource conflicts only

locally by a dynamic update of job release dates instead of introducing prece-

dence constraints. This gives rise to a reduction of both computation time and

memory requirements in every node of the enumeration tree, however, at the ex-

pense of a loss of information. Nevertheless, enriched by preprocessing, strong

dominance rules, and a flexible search strategy, our computational results show

that the algorithm performs better than previous branch-and-bound algorithms,

and is competitive with a very recent constraint propagation approach as well as

tailor-made heuristics, also for large-scale instances.

1 Introduction

Resource-constrained scheduling problems occur in many real-world applications such

as civil engineering, supply chain planning, production planning, and many others.

Given is a set of activities or jobs which have to be scheduled in order to minimize

some objective function. The jobs are typically subject to both temporal and resource

constraints. Temporal constraints are given by minimal and possibly also maximal time

lags between the start times of certain jobs. This allows to model several peculiarities

such as time-varying resource availabilities or requirements, so-called time windows

for the processing times of jobs, as well as job synchronizing or minimal job overlaps.

While in process, every job requires a certain amount of renewable resources (e.g., ma-

chines and/or personnel), but the availability of these resources is limited. The objective
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most frequently addressed is to find a time- and resource-feasible schedule minimiz-

ing the project makespan, which is the time required to complete all jobs. We refer to

Section 2 for a detailed account of the model and notation used throughout the paper.

Following the classification scheme proposed by Brucker, Drexl, Möhring, Neumann,

and Pesch (1999), the model under consideration is termed PSjtempjCmax.

Several well known combinatorial optimization problems can be (polynomially)

transformed into resource-constrained project scheduling problems, particularly ma-

chine and shop scheduling problems, but also vertex coloring of graphs (Schäffter

1997). As a consequence, the problem under consideration is not only NP-hard, but

it is even hard to approximate, and already the feasibility problem for the problem

PSjtempjCmax is NP-hard in the strong sense (a reduction of CLIQUE can be found in

(Bartusch, Möhring, and Radermacher 1988)).

Nevertheless, perhaps due to the practical relevance, exact and heuristic algorithms

for resource-constrained project scheduling are recently receiving a growing attention,

particularly for the problem setting under consideration. This is reflected by several

branch-and-bound algorithms which have been proposed in the last years, e.g., by De

Reyck and Herroelen (1998) (see also (De Reyck, Herroelen, and Demeulemeester

1998)), Schwindt (1997, 1998), and Dorndorf, Pesch, and Phan Huy (1998). Other ap-

proaches include tailor-made heuristics, some of which have been summarized in a

paper by Neumann and Zimmermann (1998). For a restricted model without maximal

time lags, but with time-varying resource requirements of the jobs, LP-based heuristics

as well as local search algorithms have been proposed by Cavalcante, De Souza, Savels-

bergh, Wang, and Wolsey (1998). In fact, this restricted model originates in a chemical

production process at BASF AG, Germany (Kallrath and Wilson 1997). For the same

model, Heipcke and Colombani (1997, 1998) have introduced a constraint propaga-

tion algorithm, and a heuristic based on approximation algorithms for single-machine

scheduling problems has been proposed by Savelsbergh, Uma, and Wein (1998).

In this paper, we focus on the general problem PSjtempjCmax involving arbitrary

minimal and maximal time lags. For this problem, important order theoretic insights

into the structure of optimum solutions have been obtained by Bartusch et al. (1988).

They also proposed a branch-and-bound procedure, however, their implementation is no

longer available. Partially based on ideas of their work, branch-and-bound algorithms

have been evaluated more recently by De Reyck and Herroelen (1998) and Schwindt

(1997, 1998). The underlying idea of these algorithms is that time-feasible schedules

(i.e., no temporal constraint is violated) are enumerated by systematically resolving

resource conflicts (i.e., times where more than the available resources are required),

and we call these approaches conflict-based. The resource conflicts are resolved by

introducing additional precedence relations between jobs, or sets of jobs, a concept

which is based upon an order theoretic representation theorem of optimal schedules

(Bartusch et al. 1988, Theorem 3.8).

The algorithm we propose is also in the tradition of conflict-based branch-and-

bound procedures. The new concept compared to all previous algorithms of this type

is that resource conflicts are resolved by a dynamic update of release dates instead of

introducing precedence relations. Thus, our algorithm is not based on the order theo-

retic concept of Bartusch et al. (1988), but on a very simple dominance property instead



Branch-and-Bound for Project Scheduling with Time-Windows 3

(see Lemma 1 and Theorem 2 below). At a first glance, this technique has the drawback

that resource conflicts are resolved only locally. More precisely, it is possible that, due

to the existence of maximal time lags, identical resource conflicts have to be resolved

repeatedly in distinct nodes of the enumeration tree although they are located on the

same path from the root to a leaf. Nevertheless, subject to several ingredients which

help to truncate large parts of the enumeration tree, our computational results show

that the algorithm performs better than previous conflict-based algorithms on the well

established ProGen/max test sets (Schwindt 1996), and it is competitive with a very

recent constraint propagation approach by Dorndorf et al. (1998). Furthermore, a trun-

cated version of our branch-and-bound algorithm shows to compete to the best known

heuristics also for large scale instances with up to 500 jobs. Compared to previous

conflict-based branch-and-bound approaches, the benefit is partly due to a very efficient

update of time-feasible schedules once a resource conflict has been resolved – a result

of the simple branching rule we propose. All conflict-based approaches must solve this

subproblem in every node of the enumeration tree. Within our branching scheme, this

update requires O(n2
) time, where n is the number of jobs. Previous approaches require

at least O(n3
) at this point.

The organization of the paper is as follows. Section 2 introduces the model and

notation. Section 3 deals with the general idea of our branching scheme and its correct-

ness, and Section 4 gives a more detailed account of some ingredients that helped to

speed up the computations. Our computational results are presented in Section 5, and

we conclude with some remarks in Section 6.

2 Model and Notation

Let V = f0; : : : ;n + 1g be the set of jobs j with corresponding integral processing

times p j, including dummy jobs 0 and n + 1 for project start and end, respectively

(p0 = pn+1 = 0). We assume that all jobs must be scheduled non-preemptively. By S =

(S0; : : : ;Sn+1) we denote a schedule, where S j is the start time of job j. Let D = (di j),

i; j 2V be the matrix of temporal constraints. That is, a time-feasible schedule S has to

i

j
di j > 0 d ji < 0

Figure1. Time window of job j relative to i

fulfill S j � Si + di j for all i; j 2 V . As depicted in Figure 1, di j � 0 (d ji < 0) implies a

minimal (maximal) positive time lag of S j relative to Si. If we assume without loss of

generality that S0 = 0, release dates and due dates for any job j are given by d0 j and

�d j0, respectively. Note that all temporal constraints refer to the start times S j of jobs.

The digraph G(D) = (V;A) with node set V , arc set A = f(i; j) j di j > �∞g and arc

weights di j for all (i; j) 2 A is called the digraph of temporal constraints.

It is well known that a time-feasible schedule exists, if and only if the digraph of

temporal constraints does not contain a cycle of positive length (Bartusch et al. 1988).
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By applying the Floyd-Warshall algorithm we calculate the longest paths between all

pairs (i; j) in G, or detect cycles of positive length. Otherwise, throughout the paper

we assume that D = (di j) is the transitive closure of the temporal constraints, more

precisely, di j denotes the length of a longest path from i to j in G. The matrix D is also

referred to as the distance matrix. A point-wise minimal time-feasible schedule is then

given by S j := d0 j, j 2V , and usually termed the earliest start schedule or ES(D).

In addition to the temporal constraints, a finite set R of different, renewable re-

sources is needed to complete the project. The availability of resource k 2 R is given

by a piecewise constant function Rk(t), i.e., an amount of Rk(t) of resource k is avail-

able at time t. Throughout the paper we identify t with the time period [t; t +1). Every

job j requires an amount of r jk(t) of resource k, k 2 R , during the tth time unit it is in

process. However, for convenience we assume that r jk(t) as well as Rk(t) are constant

over time. This does not constitute any loss of generality, since jobs with a piecewise

constant resource requirement can easily be replaced by several jobs which are “tied to-

gether” by means of temporal constraints, and a time-varying resource availability can

be modeled by introducing dummy jobs with fixed start times which consume surplus

resources.

For a given schedule S let A(S; t) := f j 2V jS j � t < S j+ p jg denote the set of jobs

that is in progress at time t. If ∑ j2A(S;t) r jk > Rk for some k 2 R , we say that A(S; t)

is a forbidden set (since it consumes more resources than available), and S causes a

resource conflict at time t. A schedule is called resource-feasible if it does not cause

any resource conflict for all k and t. It is called feasible if it is both resource and time-

feasible. Assume that a schedule S causes a resource conflict at some time t, then a

minimal delaying alternative M ! N is a partition of A(S; t) into disjoint sets M and

N such that ∑ j2M r jk � Rk for all k 2 R , and M [f jg is forbidden for all j 2N . The

intuition behind this notation is that delaying of all jobs j 2N will (at least temporarily)

resolve the conflict at time t, and N is inclusion-minimal with this property.

If we let rk(S; t) := ∑ j2A(S;t) r jk denote the resource consumption of resource k for

a given schedule S at time t, the problem can be stated as follows:

min Sn+1

s.t. S j � Si +di j

S0 = 0

(i; j) 2 A
)

(1)

rk(S; t)� Rk k 2 R ; t = 0;1; : : : ;T; (2)

where T is an upper bound on the minimum project duration, and D = (di j) denotes the

transitive closure of the temporal constraints. Here, (1) and (2) represent the temporal

and the resource constraints, respectively.

3 The solution procedure

As already mentioned in the introduction, two different branch-and-bound approaches

have recently received attention for the problem under consideration.

Within the conflict-based approach, time-feasible schedules are enumerated by re-

solving resource conflicts, which is done by introducing additional temporal constraints.
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Every node of the enumeration tree represents a time-feasible, but possibly resource-

infeasible schedule. Branching reflects all possibilities of resolving a conflict (i.e., all

minimal delaying alternatives), and after a resource conflict has been resolved by having

introduced new temporal constraints, a correspondingly updated time-feasible sched-

ule has to be calculated. A feasible solution is found as soon as a schedule does not

cause any resource conflict. Conflict-based approaches have previously been proposed

by Bartusch et al. (1988), De Reyck and Herroelen (1998) as well as Schwindt (1997,

1998). While the first two approaches are based on introducing precedence constraints

between jobs in order to resolve resource conflicts, Schwindt (1997, 1998) uses dis-

junctive precedence constraints between sets of jobs (that is, according to a minimal

delaying alternative, some of the jobs of a resource conflict have to wait until at least

one job completes). Since we also follow the conflict-based idea, we display the general

framework in Algorithm 1.

Algorithm 1: Conflict-based branch-and-bound scheme

Input : distance matrix D, resource constraints, upper bound T

Output : Schedule S� with minimal makespan Cmax or “infeasible”

Cmax T +1; S�n+1 ∞;

perform preprocessing on D; (Section 4.1)

if preprocessing reveals that D is infeasible then

return “infeasible”;

ActiveNodes fES(D)g;

while ActiveNodes 6= /0 do

choose Node out of ActiveNodes; (Section 3.5)

ActiveNodes ActiveNodes – Node;

S time-feasible schedule corresponding to Node;

if S is resource-feasible then

if Sn+1 < S�n+1 then S� S; Cmax Sn+1;

else

if Node is not dominated (Section 4.2) then

A(S;t) first resource conflict of S;

ActiveNodes ActiceNodes [ branch(S, A(S;t)); (Section 3.1)

if Cmax = T +1 then return “infeasible”;

return S� and Cmax;

The second approach is based on constraint propagation techniques, where every

node of the enumeration tree represents feasible domains for the start times of jobs.

Time and resource constraints are propagated by applying so called consistency tests,

aiming at the reduction of those domains. Branching then represents some systematic

way of partitioning the domains, and a feasible schedule is found as soon as all domains

have cardinality one. We refer to Heipcke and Colombani (1997, 1998) and Dorndorf

et al. (1998) for more details on constraint propagation approaches. We note, however,
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that the main difference between both approaches is basically another way of reducing

the domains of start time variables.

3.1 Branching by dynamic release dates

Within the procedure we propose, every node of the enumeration tree represents a cor-

responding time-feasible schedule S. Unless this schedule is resource-feasible, it will

cause at least one resource conflict. If we let t be the time of the earliest resource

Algorithm 2: Branching by dynamic release dates

Procedure: branch(S, A(S;t))

Input : A time-feasible schedule S with resource conflict A(S;t), value of current

best solution Cmax

Output : A set of new nodes (or time-feasible schedules, respectively)

Children = /0;

if conflict A(S;t) has been resolved earlier on the same path then

resolve conflict A(S;t) as before; (Section 4.2)

compute corresponding schedule Snew according to (4); (Section 3.2)

Children fSnew
g;

return Children;

compute all min. delaying alternatives M !N for A(S;t); (Section 3.6)

for all M !N do

update d0 j for all j 2N according to (3), resp. (7); (Sections 3.2, 3.4)

if M !N is feasible (cf. Section 3.3) then

compute schedule Snew according to (4); (Section 3.2)

if Snew
n+1 <Cmax then

perform consistency test and obtain

a possibly improved lower bound LB; (Section 4.1)

if LB <Cmax then Children Children [ fSnew
g;

return Children;

conflict of S, then branching represents all possibilities of resolving this conflict by de-

laying the start times of certain jobs according to all minimal delaying alternatives for

that conflict. The delaying itself is performed by augmenting the corresponding release

dates and thus implicitly reducing the domains of the corresponding start-time vari-

ables. Based on the new set of release dates, it has to be checked if the resulting system

of temporal constraints is feasible, and in this case a corresponding point-wise minimal

time-feasible schedule Snew is calculated (see Section 3.2). Subject to an additional con-

sistency test (see Section 4.1), the new node is eventually inserted into the enumeration

tree if its lower bound does not exceed the current best known upper bound. Note that

the new time-feasible schedule Snew is basically the only information which is stored in

the corresponding node of the enumeration tree. The branching procedure is displayed

in Algorithm 2.
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3.2 Calculation of time-feasible schedules

Consider a node corresponding to a time-feasible schedule S, and assume that A(S; t) is

forbidden for some time t. Then, as depicted in Figure 2, a child node is generated for

every minimal delaying alternative M ! N for A(S; t) by updating the release dates

d0 j according to

dnew
0 j := min

i2M
fSi + pig for all j 2 N : (3)

This will (temporarily) resolve the resource conflict at time t and either results in time-

infeasibility or a new minimal time-feasible schedule Snew can be calculated.

r = 1
r = 1

r = 2

R = 2

Figure2. Resolving a resource conflict via release dates according to all minimal delaying alter-

natives.

Note that, except for the values d0 j, j 2 N , the path lengths di j (i 6= 0) remain

constant in the course of the algorithm. We thereby allow that di0 + dnew
0 j > di j, i.e.,

some of the triangle inequalities of D may be violated. However, since we only increase

the values d0 j, j 2 V the triangle inequalities di j + d jk � dik hold for all i; j 6= 0. One

major advantage of our branching scheme is based on this invariant, which is expressed

by the following theorem.

Theorem 1. Consider a time-feasible but resource-infeasible schedule S, and a delay-

ing alternative M ! N to resolve a resource conflict A(S; t) of S. If the conflict is

resolved by introducing release dates according to (3), the new set of temporal con-

straints is feasible if and only if dnew
0 j + d j0 � 0 for all j 2 N , and a corresponding

point-wise minimal time-feasible schedule can be computed in time Θ(jN jn) by

Snew
k = maxfSk;max

j2N
fdnew

0 j +d jkgg for all k 2V: (4)

Proof. Since the start times Snew given by (4) are obviously point-wise minimal, we

only have to show that they are time-feasible if dnew
0 j +d j0 � 0 for all j 2 N . Suppose

this is not the case and there exists a pair k; ` 2 V of jobs that violates the temporal

constraints, i.e.

Snew
`

< Snew
k +dk`:

Let us first assume that k 6= 0 6= `. Since S was time-feasible, and since S
`

� Snew
`

,

we know that Sk < Snew
k and thus there exists some delayed job 0 6= j 2 N such that

Snew
k = dnew

0 j +d jk. But now the triangle inequality yields

Snew
`

< Snew
k +dk` = dnew

0 j +d jk +dk` � dnew
0 j +d j`;
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which is a contradiction to (4). Next consider the cases k = 0 and `= 0. If we assume

that Snew
`

< d
(new)

0`

for some ` 2V nf0g (case k = 0), we again obtain a contradiction to

(4). Furthermore, if 0< Snew
k +dk0 for some k2V nf0g (case `= 0), the same arguments

as above yield a contradiction to the assumption that dnew
0 j +d j0 � 0 for all j 2 N . ut

Note that this is a major advantage over all previously proposed conflict-based

branch-and-bound algorithms. Since for every new branch at most n jobs are delayed,

the computation of the corresponding minimal time-feasible schedule Snew can be per-

formed in O(n2
) time. Within the procedures proposed by Bartusch et al. (1988) and

De Reyck and Herroelen (1998), where precedence constraints are introduced instead

of release dates, the analogous computation requires O(n3
) time. This is due to the fact

that every update of the distance matrix requires O(n2
) time. Within the algorithm de-

vised by Schwindt (1997, 1998) which is based on the idea of disjunctive precedence

constraints, an even non-polynomial algorithm is proposed for the analogous problem

(the running time depends on the current upper bound on the project makespan).

With respect to memory consumption, it follows directly from (3) and (4) that the

information which has to be stored in every node of the enumeration tree is basically

the vector of start times Snew. This is due to the fact that the values di j (i 6= 0) remain

invariant in the course of the algorithm. Thus the memory requirement for every node

of the enumeration tree is drastically reduced in comparison to the procedures which

use precedence constraints, where the entire distance matrix has to be stored.

3.3 Correctness of the branching scheme

Next we will show that our branching scheme in fact computes an optimal solution. Let

some time-feasible schedule S be given, and let A(S; t) be a resource conflict of S. In

accordance with Theorem 1, we call a delaying alternative M !N for A(S; t) feasible

if it results in a time-feasible schedule, i.e., if dnew
0 j + d j0 � 0 for all j 2 N . Further-

more, we introduce the notion of domination. We say that a time-feasible schedule S

dominates another time-feasible schedule S0, if S j � S0j for all j 2V .

Lemma 1. Consider a feasible schedule S� and some time-feasible but resource-infeasible

schedule S that dominates S�. Then for any resource conflict A(S; t) of S there exists a

feasible minimal delaying alternative M ! N such that the resulting schedule Snew

computed according to (3) and (4) dominates S�.

Proof. Let without loss of generality A(S; t) = f1; : : : ; `g be a forbidden set of jobs

scheduled in parallel by schedule S at some time t, and assume that the order of start

times of those jobs in schedule S� is given by S�1 � �� � � S�
`

. Since S� is resource-feasible

and f1; : : : ; `g is forbidden, we have

min
i=1;:::;k

fS�i + pig � S�k+1

for some 1 � k < `, and we let k be minimal with this property. Then jobs 1; : : : ;k

are scheduled simultaneously in S� for some time, and consequently f1; : : : ;kg is not

forbidden.
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We claim that any minimal delaying alternative M !N for conflict A(S; t) where

f1; : : : ;kg �M is feasible and (by applying (4)) leads to a time-feasible schedule Snew

that dominates S�. Let M ! N be such a minimal delaying alternative, and suppose it

were not feasible. Then, due to the definition of feasible minimal delaying alternatives,

dnew
0 j +d j0 > 0 for some j 2 N . But

dnew
0 j = min

i2M
fSi + pig � min

i=1;:::;k
fSi+ pig � min

i=1;:::;k
fS�i + pig � S�k+1: (5)

Since j 2 N we have S�k+1 � S�j due to the minimal choice of k. Due to (5) we now

obtain dnew
0 j � S�j , but since we assumed that dnew

0 j +d j0 > 0, this would imply S�j +d j0 >

0, which is a contradiction to S� being feasible.

Thus dnew
0 j + d j0 � 0 for all j 2 N , and in particular dnew

0 j � S�j for all j 2 N . We

finally have to show that Snew
j � S�j for all j 2 V . To this end, recall (4) and observe

that for any start time Sk that has been changed we know that Snew
k = dnew

0 j + d jk for

some j 2 N . But now, since S� is time-feasible, and since dnew
0 j � S�j we obtain S�k �

S�j +d jk � dnew
0 j +d jk = Snew

k , which concludes the proof. ut

Now observe that in every level of the enumeration tree at least one release date is

increased by at least 1. Under the assumption that we are given an upper bound T on

the minimal project duration, we have proven the following theorem.

Theorem 2. The above branch-and-bound procedure based on a branching scheme

according to (3) and (4) computes an optimal solution in a finite number of steps.

3.4 Revised update of release dates

The above update step (3) can be further refined by anticipating temporal constraints

between the sets M and N of a delaying alternative as follows. Consider a time-feasible

schedule S where some forbidden set A(S; t) is processed in parallel at some time t. Let

M ! N be a delaying alternative for this conflict and suppose there exist jobs i 2 M

and j 2 N such that pi >�d ji. Then job j has to start before completion of i in every

time-feasible schedule S, i.e., S j < Si + pi. In this case the completion time of i need

not be considered when calculating the delay for the jobs j 2N . More precisely, we let

M 0 := fi 2 M j pi ��d ji for all j 2N g and replace the update of the release dates as

of (3) by

dnew
0 j := min

i2M 0

fSi + pig for all j 2N : (6)

Now we claim that this suffices for the correctness of the branching scheme.

Corollary 1. The above branch-and-bound procedure based on a branching scheme

according to (6) and (4) computes an optimal solution in a finite number of steps.

Proof. Recall the proof of Lemma 1 and simply replace (5) by

dnew
0 j = min

i2M 0

fSi + pig

� min
i2f1;:::;kg\M 0

fSi + pig � min
i2f1;:::;kg\M 0

fS�i + pig � S�k+1:
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To see that the last inequality holds, recall that mini=1;:::;kfS�i + pig � S�k+1 and observe

that otherwise there exists some i 2 f1; : : : ;kgnM 0 with S�i + pi � S�k+1. By definition

of M 0 it follows that pi +d ji > 0 for some j 2 N , and thus, since S� is supposed to be

feasible, S�j < S�i + pi � S�k+1. But due to the choice of k, and since j 2N we also have

S�k+1 � S�j , a contradiction. Thus, as in the proof of Lemma 1, we obtain dnew
0 j � S�j for

all j 2 N , and proceed as before. ut

Another improvement can be obtained by taking so-called feasible domains for the

start times of jobs into consideration (see, e.g., (Dorndorf et al. 1998) and (Klein and

Scholl 1999)). A feasible domain ∆ j for the start time of a job j can be calculated as

follows. For a given upper bound T on the minimal project makespan, determine the

earliest and latest start and completion times ES j, LS j, EC j, and LC j for every job j

and set ∆ j := fES j; : : : ;LS jg. If for a job j the latest start time LS j is smaller then the

earliest completion time EC j, the job must be in process during its so-called core time

CTj := fLS j; : : : ;EC jg. Now, for every job j and every time t 2 fES j; : : : ;LC jg, check

if the job has a resource conflict with the jobs It , where It := fi 2V j t 2CTig is the set

of jobs which must be in process at time t. If this is the case, job j must not be executed

at time t, and one can remove the start times ft� p j +1; : : : ; tg from ∆ j. Finally, within

our branching scheme we can obviously replace (6) by

dnew
0 j := min

t2∆ j

ft � min
i2M 0

fSi+ pigg for all j 2 N : (7)

3.5 The search strategy

The search strategies we examined are based on the idea to use auxiliary functions to de-

cide which node could be a promising candidate for branching. Such auxiliary functions

are particularly important if the objective is the project makespan, since any criterion

which is only based on the makespan of the actual schedule, that is, the critical path

lower bound, is not sensitive enough to local schedule modifications, and thus in gen-

eral does not serve as a good decision criterion. More precisely, the decisions are based

on two parameters which are calculated for the corresponding time-feasible schedules

S. On the one hand, these are the gaps between the start times S j and latest start times

�d j0, and on the other hand the tails d jn+1. To improve flexibility, we additionally use

of a certain degree of randomness while choosing the nodes to be processed next.

Finally, we implemented a very flexible tree traversing strategy that processes a

parameter driven number of DFS-like paths at a time. (When used as a heuristic, this

strategy is also termed beam search.) A comparable tree traversing strategy has been

used, e.g., by Klein and Scholl (1998).

3.6 Calculation of minimal delaying alternatives

Minimal delaying alternatives have to be computed in (almost) every node of the enu-

meration tree. For a time-feasible schedule S with a resource conflict at time t, in

principle all subsets M � A(S; t) are potential candidates for non-dominated and non-

forbidden sets, yielding a minimal delaying alternative M ! A(S; t)nM . A procedure
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for computing these sets appears in Brucker, Knust, Schoo, and Thiele (1998). They

propose a binary decision tree where every level j of the tree corresponds to the deci-

sion to include or exclude job j.

The procedure we implemented is basically the same, however, the necessary ef-

fort can be slightly reduced by considering the jobs in non-decreasing order of their

consumption of some resource, preferably the resource with smallest ratio Rk=rk(S; t).

Moreover, as also proposed, e.g., in (De Reyck and Herroelen 1998, Theorem 2), the

given temporal constraints may serve to discard certain minimal delaying alternatives

immediately within this subroutine. Consider, for instance, a minimal delaying alterna-

tive M !N and suppose there exist two jobs j 2M and i 2N such that di j � 0. Then

it is easy to see that this delaying alternative is redundant and can be discarded.

3.7 Upper and lower bounds

An trivial upper bound is easily obtained by calculating ∑ j2V maxfp j;maxi2V d jig. To

improve the initial upper bound, we additionally perform a depth first search heuristic

before starting the branch-and-bound algorithm. A couple of paths in the enumeration

tree are generated by resolving resource conflicts according to the orders given by stan-

dard priority lists. In most of the cases, the initial upper bound could be significantly

improved by this heuristic, while the computation time is negligible.

One of the main ingredients of a branch-and-bound procedure is the computation

of lower bounds. Several lower bounds have been proposed, compared, and evaluated

for the basic model for resource-constrained project scheduling PSjprecjCmax, where

jobs are subject to ordinary precedence relations only. We refer to Stinson, Davis,

and Khumawala (1978), Christofides, Alvarez-Valdes, and Tamarit (1987), Mingozzi,

Maniezzo, Ricciardelli, and Bianco (1998), Klein and Scholl (1999) and Brucker and

Kunst (1998). These bounds have been partially extended to the model with arbitrary

time lags, e.g., by De Reyck and Herroelen (1998) and Heilmann and Schwindt (1997).

Moreover, a Lagrangian approach which is based upon minimum–cut computations in

auxiliary networks has been proposed by Möhring, Schulz, Stork, and Uetz (1999).

One of the fastest computable lower bounds is based on a single-machine relaxation

(several authors, e.g., Mingozzi et al. (1998) refer to this bound as LB3). The idea is

to determine a set of jobs out of which no pair can be scheduled simultaneously, either

due to temporal or resource constraints. Clearly, those jobs must be scheduled sequen-

tially, and the sum of their processing times is a lower bound on the minimal project

makespan. This bound can be improved by considering also fractions of jobs; see (De

Reyck and Herroelen 1998, Theorem 4). It can be further refined by also considering

the heads and tails of the involved jobs as proposed by Carlier (1982, Proposition 1).

However, our procedure is based on the principle to spend very little effort in every

single node of the enumeration tree, at the expense of a comparatively large enumeration

tree. Thus only fast computable lower bounds were considered, and we obtained the best

results by only using the critical path lower bound, which is simply the makespan of the

resource relaxation of the (sub-)problem under consideration. Within our procedure,

this lower bound is obviously obtained in time O(n) in every node of the enumeration

tree when calculating the point-wise minimal time-feasible schedule as proposed in
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(4). Nevertheless, we have integrated the above mentioned single-machine based lower

bound into a preprocessing routine (see also Section 4.1).

4 Improving the performance

In this section we present some further ingredients which turned out to be computation-

ally fruitful.

4.1 Preprocessing

In a preprocessing step, certain additional constraints (such as precedence relations or

release dates) are fixed beforehand by arguing that they must be fulfilled by any optimal

schedule.

As a typical example consider the following consistency test which is also described

in Brucker, Hilbig, and Hurink (1999) for single machine scheduling, and in Schwindt

(1997) and De Reyck and Herroelen (1998) for resource-constrained project scheduling.

If a pair of jobs fi; jg is forbidden, that is, i and j cannot be scheduled simultaneously,

and either �p j < di j, or T < d0 j + p j + di;n+1 (for some global upper bound T on the

project makespan), then j cannot precede i, since this would violate the temporal con-

straints. Therefore, i must precede j in every feasible schedule. Even if none of the

conditions �p j < di j and T < d0 j + p j + din+1 is fulfilled, we know that either i must

precede j or vice versa, and this consideration, by taking the point-wise minimum over

the resulting release dates, possibly leads to larger release dates for some jobs. In a pre-

processing step we perform this rule for every forbidden set of cardinality two, and we

obtain a possibly extended distance matrix D which is still valid for all optimal sched-

ules. Clearly, this procedure can be invoked repeatedly until no further improvement is

achieved. Additionally, an analogous consistency test can be applied in every node of

the enumeration tree (where we have restricted the procedure to only a single iteration).

Another preprocessing step we implemented is to compute an earliest start time for

any job j not only by a longest path calculation (that is, d0 j), but by calculating the above

mentioned single-machine based lower bound for every single job j by considering the

set of all (fractions of) jobs that must complete before j. If a subset of those (fractions

of) jobs is identified such that no pair may be scheduled simultaneously, the sum of

their processing times is clearly a lower bound for the earliest start time of job j.

4.2 Dominance rules

Generally speaking, dominance rules allow to discard redundant nodes of the enumer-

ation tree by arguing that these are dominated by others. As already mentioned, the

approach by dynamic release dates is oblivious in the sense that the same resource con-

flicts possibly have to be resolved repeatedly. In a sense, the dominance rules we have

implemented help to recover a certain portion of the “history” that led to a specific node

of the enumeration tree, which allows to identify redundant nodes.

First, based upon Lemma 1, any node xS of the enumeration tree (corresponding to a

time-feasible schedule S) can be discarded if there exists another node xS0 on a different
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path of the enumeration tree such that S0 dominates S, i.e., if S0j � S j for all j 2 V .

This obviously follows since any feasible schedule S� that could be obtained starting

from xS is also dominated by S0. This dominance rule can obviously be implemented by

following the path from node xS up to the root of the enumeration tree, and considering

all immediate children of these nodes. At this point however, we have to take care

of a phenomenon which could be termed cross pruning: Suppose that nodes xS0 and

xS lie on different paths of the enumeration tree and dominate all child nodes of the

other, respectively. Obviously, pruning of all child nodes could possibly lead to incorrect

results.

But we can do even better if we store in every node of the enumeration tree how

a resource conflict was resolved to generate that node. Then, before branching over

some resource conflict, we check if the same conflict, or a subset thereof, has been

resolved before by following the path up to the root node. If this is the case we need not

branch but it suffices to make the same decision as before. To make this clear, consider

the situation depicted in Figure 3. The resource conflict caused by jobs f1;2;3g has

previously been resolved on the path up to the root by delaying jobs 2 and 3. Thus it

is not necessary to branch again over all minimal delaying alternatives for this conflict,

but it suffices to consider the decision that was made before, i.e., delaying jobs 2 and

3. This is sufficient, since the other nodes corresponding to the remaining minimal

delaying alternatives would in any case be dominated (as indicated by the two arcs in

Figure 3). To implement this dominance rule, each node of the tree additionally has to

incorporate a pointer to its father in the enumeration tree, as well as the information

about how a resource conflict has been resolved.

f1;2;3g

f1;2;3g

f1g ! f2;3g

f1g ! f2;3g

Figure3. A simple dominance rule by recalling past decisions

For both dominance rules, a certain amount of additional memory has to be reserved

to store the required information, which particularly includes nodes where branching

has already been performed. Our experiments showed, however, that on average the

overhead was outweighed by the desired effect.

For the next dominance (or fathoming) rule, we need some preliminary definitions.

For a minimal delaying alternative M ! N of a resource conflict A(S; t), call a job

i 2M critical (w.r.t. the current schedule S) if i =argminν2M fSν+ pνg, and let I be the

set of all critical jobs with respect to S and M !N . Denote by M �N a corresponding

disjunctive precedence constraint of the following form:

There exists at least one i 2 I such that Si + pi � S j for all j 2 N :
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(If there is only a single critical job i 2 I for a delaying alternative M ! N , the corre-

sponding disjunctive precedence constraint M � N is simply a set of ordinary prece-

dence constraints between job i and all j 2N .) Now consider a path within our enumer-

ation tree, and the corresponding series of delaying alternatives Mq ! Nq, q = 1; : : : ;r

with respective critical jobs Iq. Let us call such a path non-contradicting, if the corre-

sponding set of disjunctive precedence constraints Mq �Nq, q = 1; : : : ;r, together with

the temporal constraints given by the distance matrix D is feasible, i.e., the constraints

do not induce any cycle of positive length. (Following this notation, the revised update

step according to (6) and (4) guarantees that any single delaying alternative, respectively

the corresponding update of release dates is not contradicting in itself.)

Lemma 2. Within the proposed branching scheme, it suffices to consider paths which

are non-contradicting.

Proof. From the representation theorem for optimal schedules (Bartusch et al. 1988,

Theorem 3.8), we know that it suffices to consider optimal schedules S� which can be

obtained as earliest-start schedule of a feasible extension of the temporal constraints.

Here, a feasible extension of the temporal constraints is an extension of the given tem-

poral constraints by a set of precedence constraints which does not induce any cycle

of positive length. Now, exactly as in the proof of Lemma 1, one can show inductively

that non-contradicting paths are sufficient to generate all schedules S� which corre-

spond to feasible extensions of the temporal constraints, thus it suffices to restrict to

non-contradicting paths; we omit the details. ut

It is generally not trivial to detect non-contradicting paths, however, we implemented a

third dominance rule which is based upon the above lemma, and which makes use of

so-called total idle times. A total idle time is defined as a time interval where no job is

in process, and there is no temporal constraint which enforces this constellation. More

precisely, we say that there is a total idle time at time t, if there are two non-empty sets

A and B such that any job j 2 A completes no later than t and any job j 2 B starts no

earlier than t+1, and additionally Si+di j < S j for all i2 A and j 2B. The last condition

states that, loosely speaking, there is no temporal constraint enforcing the idle time at

[t; t +1).

Lemma 3. If a time feasible schedule S has a total idle time, the corresponding node

of the enumeration tree can be discarded.

Proof. We show that only a contradicting path leads to a total idle time, thus the claim

follows by Lemma 2. Consider a node of the enumeration tree, let t be a total idle time

in the corresponding schedule, and let A and B be the sets as defined above. Remember

that Si + di j < S j for all i 2 A and j 2 B, and that the whole set B can be left-shifted

by at least one time unit. Consequently, for any job j 2 B, there exists at least one

job i 2 B which caused that j was postponed to its current position (it is crucial here

that i 2 B). More precisely, the reason for j’s current position is either a tight temporal

constraint with a job i 2 B, or a minimal delaying alternative M ! N on the path

from the root node down to the node under consideration such that j 2 N (i.e., job

j has been delayed). Note that in the latter case, the respective critical jobs I � M

for the delaying alternative M ! N are all contained in B. Thus, if one recursively
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continues this reasoning (i.e., for j 2 B pick (any of) the job(s) i 2 B which caused

that j was moved to its current position), since B is finite, is not hard to see that one

obtains a cycle of positive length among the jobs in B. This eventually shows that the

disjunctive precedence constraints which correspond to the respective minimal delaying

alternatives (from the root down to the node under consideration), together with the

given temporal constraints, are infeasible. Consequently, the path under consideration

is not non-contradicting. ut

4.3 Bidirectional planning

A folklore trick for scheduling problems is to consider an equivalent instance where all

temporal constraints have been reversed. For the makespan objective, the respective so-

lutions can be transformed in either direction. Thus, when we put limits on the running

time of our branch-and-bound procedure, we make use of this simple trick by spending

half of the time for the original instance, and another half of the time for an instance

with reversed temporal constraints, now using the makespan of the best found solution

so far, if any, as an upper bound. In quite some cases, this helped to reduce the time

required to verify optimality.

5 Computational Experiences

5.1 Computing Environment

Our experiments were conducted on a Sun Ultra 2 with 200 MHz clock pulse and 512

MB of memory operating under Solaris 2.6. The code has been written in C++ and is

compiled with the EGCS g++ compiler version 2.8 using the -O3 optimization option.

5.2 Benchmark Instances

We have applied our algorithms to the widely accepted test beds of the ProGen/max

library that has been created by Schwindt (1996). ProGen/max is an extension of the

instance generator ProGen which has been developed by Kolisch and Sprecher (1996)

and which is designed to create instances with ordinary precedence constraints only.

We used a test set of 1080 instances each consisting of 100 jobs (Test set A), as well as

a test set of 120 instances each consisting of 500 jobs (Test set B). In both test sets, the

job processing times are chosen randomly between 5 and 15 and the number of different

resources is 5. The instances are generated by systematically modifying four different

control parameters, the network complexity, which reflects the average number of di-

rect successors of an activity, the resource factor, which describes the average number

of resources required in order to process an activity, the resource strength, which is

a measure of the scarcity of the resources, and a parameter which controls the num-

ber of cycles in the digraph of temporal constraints. In order to generate the temporal

constraints, ProGen/max makes use of two different methods; either an entire project

network is created directly, or first (cyclic) subnetworks are generated and merged af-

terwards. For a detailed discussion of the characteristics of the instances we refer the



16 A. Fest, R. H. Möhring, F. Stork, and M. Uetz

reader to (Schwindt 1996, 1997). Moreover, we have also considered a small set of

benchmark instances originating in a typical chemical production process as described

in (Kallrath and Wilson 1997); the instances have been taken from (Cavalcante 1997).

These instances do not involve maximal time lags, but time-varying resource require-

ments of jobs.

5.3 Experimental Results

Tables 1–3 show the results of some of the experiments we have performed. For each ex-

periment, we have tested all instances of a test set subject to a limit on the running time

for each individual instance. We then display the number of instances where a feasible

solution was found, the number of instances where an optimal solution was found and

optimality was verified, and the number of instances where infeasibility could be proved

within the given time limit. The tables further display the number of instances where

neither a feasible solution could be found nor infeasibility could be proved within the

time limit. Finally, the tables contain the average deviation from the respective lower

bounds, taken over all instances where a feasible solution was found. For compari-

son reasons, the lower bounds have been taken from an URL maintained by Schwindt

(1999). Note that exactly 1059 out of the 1080 instances from Test set A, and 119 out

of the 120 instances from Test set B have a feasible solution.

Improving the performance – Impact of the different ingredients. Table 1 refers to Test

set A and compares the results of five of the experiments we have performed in order to

measure the impact of the different ingredients proposed in Section 4. We display results

for the case that all of those ingredients are switched on and off, respectively. Moreover,

the table shows the results when not using (a) the dominance rules (Section 4.2), (b)

the preprocessing (Section 4.1), and (c) the separation of the running time between

original and a reversed instance (Section 4.3). For these experiments, we have allowed

100 seconds of computation time.

Obviously, all of the considered ingredients contribute considerably to the overall

performance of the algorithm. In particular, as shown in Table 1, all ingredients im-

prove the number of optimally solved instances, the dominance rules are crucial for

finding feasible solutions for all of the 1059 feasible instances, and the preprocessing is

responsible to prove infeasibility for all of the 21 infeasible instances (note that with-

out preprocessing, 17 of these instances remain open). On average, the quality of the

computed solutions is satisfactory (7% deviation of computed solution and the respec-

tive best known lower bound), however, there are a few instances with an extremely

large deviation, such that the maximum deviation varies between 175–208% for these

experiments.

Running times. We next investigate the computation times that are required to obtain

solutions for Test set A. In 6 different experiments, we allowed 3, 10, 30, 100, 300, and

1000 seconds of computation time. All of the above mentioned ingredients are used

within these experiments, except that for running times between 3 and 30 seconds, the

preprocessing is restricted to one second (for some of the instances, the preprocessing

takes up to 15 seconds). We note that the procedure computes a feasible solution for
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all ingred. on all ingred. off (a) domin. off (b) preproc. off (c) bidirect. off

feasible 1059 1019 1028 1059 1058

optimal 768 690 742 707 739

infeasible 21 2 21 4 21

unknown 0 59 31 17 1

av. dev. in % 7.0 9.1 8.3 7.5 7.6

Table1. Termination status of our algorithm for the 1080 instances of Test set A for 100 seconds

of computation time. The first two columns show the results for the case when all ingredients

described in Section 4 are switched on or off, respectively, and the next three columns show the

impact of not using dominance rules, preprocessing, and bidirectional planning. Note that exactly

1059 instances are feasible.

all of the feasible 1059 instances already within 10 seconds, however, for very large

computation times (1000 seconds), the improvements are marginal.

3 sec. 10 sec. 30 sec. 100 sec. 300 sec. 1000 sec.

feasible 996 1059 1059 1059 1059 1059

optimal 628 720 749 768 781 792

infeasible 20 20 20 21 21 21

unknown 64 1 1 0 0 0

av. dev. in % 10.9 9.4 7.7 7.0 6.5 6.1

Table2. Termination status of our algorithm (all ingredients enabled) for the 1080 instances of

Test set A for different time limits.

Beam–search. To cope with the large-scale instances of Test set B (500 jobs), we have

implemented a truncated (beam–search) variant of our procedure. For each node in

the enumeration tree we only consider k minimal delaying alternatives. Among them,

we always take the best w, w < k, nodes into further consideration. This selection is

performed according to the computation of gaps and tails as described in Section 3.5.

Among several experiments, we obtained the best results when setting k= 10 and w= 5.

Based on these parameters settings, we have performed four experiments allowing 50,

100, 200, and 1000 seconds of computation time, respectively. As indicated in Table 3,

this truncated version of our algorithm computes a feasible solution for all 119 feasible

instances within less than 200 seconds, and optimality is verified for 70 instances within

less than 50 seconds (by computing a solution which matches the critical path lower

bound). Within these experiments, the maximum deviation of the computed solution

from the critical path lower bound varies between 33–56%.

Comparison to previous branch-and-bound algorithms and heuristics. We compare

the results of our algorithm to results that have been obtained by other branch-and-

bound algorithms, as well as to a cycle-decomposition (priority-rule) heuristic which
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50 sec. 100 sec. 200 sec. 1000 sec.

feasible 94 117 119 119

optimal 70 70 70 70

infeasible 1 1 1 1

unknown 25 3 0 0

av. dev. in % 1.1 5.0 5.2 3.8

Table3. Termination status of the truncated version of our algorithm for different time limits for

the 120 instances of Test set B. Note that exactly 119 instances are feasible.

is described in Neumann and Zimmermann (1998). Following the latter authors, the

cycle-decomposition heuristic is among the most powerful priority-rule heuristics for

the problem. All authors have used the same test sets, however, we would like to stress

that such comparisons are to be taken with care, due to the different hard- and software

architectures. Schwindt (1998) as well as Neumann and Zimmermann (1998) have used

a Pentium PC with 200 MHz clock pulse, De Reyck and Herroelen (1998) a Pentium PC

with 60 MHz, and Dorndorf et al. (1998) performed their experiments on a Pentium/Pro

PC with 200 MHz clock pulse and used ILOG C++ libraries. All algorithms are written

in C or C++.

Consider, e.g., the percentage of instances of Test set A solved to optimality. Ac-

cording to Table 2, our algorithm verifies optimality for 70% of the 1080 instances

within 30 seconds of computation time. Within the same time limit, Schwindt (1998)

could verify optimality for 62.5% of the instances, while De Reyck and Herroelen

(1998) verified 56% within a time limit of 100 seconds. Dorndorf et al. (1998) could

recently optimize 70.1% of the instances, also within 30 seconds of computation time.

All of these algorithms – except the one by De Reyck and Herroelen (1998) – find a

feasible solution for all 1059 feasible instances and prove infeasibility for the remain-

ing 21 instances. The corresponding overall average deviations from the best known

lower bounds (with respect to all 1059 feasible instances) are 7.7% (this paper), 7.0%

(Schwindt 1998), and 4.6% (Dorndorf et al. 1998). De Reyck and Herroelen (1998) re-

port an average deviation of 14%, but this value is based on a different set of instances,

and perhaps worse lower bounds.

For Test set B, Neumann and Zimmermann (1998) as well as Dorndorf et al. (1998)

have reported on computational results. Within 200 seconds, the cycle-decomposition

heuristic of Neumann and Zimmermann (1998) solves 7 instances optimally, and all 119

instances feasible, at an overall average deviation of 5% from the critical path lower

bounds, whereas a truncated branch-and-bound procedure based on (Schwindt 1998)

(the results are documented in (Neumann and Zimmermann 1998)) solves 74 instances

optimally, and 95 feasible, at an average deviation of 0.1%. Within the same time limit,

Dorndorf et al. (1998) solve 78 of the instances optimally, and find a feasible solution

for 116 instances, at an average deviation of 0.5%. Our algorithm computes a feasible

solution for all 119 instances (within 200 seconds), thereof 70 are solved optimally, and

the overall average deviation for all 119 instances is 5.2%.

The instances from (Cavalcante 1997) have been considered by Cavalcante et al.

(1998) as well as (Heipcke and Colombani 1997, 1998); one of these instances also by
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Savelsbergh, Uma, and Wein (1998). Although we were able to find a feasible solution

for all instances within short time with our algorithm, the quality of the first found solu-

tions could often not be improved substantially, even for large running times. For these

instances, the best known solutions have been obtained via tabu search by Cavalcante

et al. (1998).

6 Concluding Remarks

We have proposed a simple yet powerful branch-and-bound algorithm for resource-

constrained project scheduling problems where any two of jobs can be linked by an

arbitrary time window. The theoretical foundation for our approach is a very simple

dominance property of earliest-start schedules, which is exactly reflected by the branch-

ing scheme we propose. In spite of the simplicity of the general algorithmic idea and, as

a result, the comparatively large enumeration tree, our computational experiences sug-

gest that the algorithm performs better than previous conflict-based branch-and-bound

algorithms. This is perhaps due to the very efficient update of time-feasible schedules

in every node of the enumeration tree, and the effectiveness of strong and simple dom-

inance rules. Moreover, our algorithm competes with a recent constraint propagation

approach as well as tailor-made heuristics, and a truncated version shows to be suited

also for large-scale instances with up to 500 jobs.
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