398 research outputs found

    Quantum state transformation by dispersive and absorbing four-port devices

    Full text link
    The recently derived input-output relations for the radiation field at a dispersive and absorbing four-port device [T. Gruner and D.-G. Welsch, Phys. Rev. A 54, 1661 (1996)] are used to derive the unitary transformation that relates the output quantum state to the input quantum state, including radiation and matter and without placing frequency restrictions. It is shown that for each frequency the transformation can be regarded as a well-behaved SU(4) group transformation that can be decomposed into a product of U(2) and SU(2) group transformations. Each of them may be thought of as being realized by a particular lossless four-port device. If for narrow-bandwidth radiation far from the medium resonances the absorption matrix of the four-port device can be disregarded, the well-known SU(2) group transformation for a lossless device is recognized. Explicit formulas for the transformation of Fock-states and coherent states are given.Comment: 24 pages, RevTe

    A phase I study of bendamustine hydrochloride administered day 1+2 every 3 weeks in patients with solid tumours

    Get PDF
    The aim of the study was to determine the maximum tolerated dose (MTD), the dose limiting toxicity (DLT), and the pharmacokinetic profile (Pk) of bendamustine (BM) on a day 1 and 2 every 3 weeks schedule and to recommend a safe phase II dose for further testing. Patients with solid tumours beyond standard therapy were eligible. A 30-min intravenous infusion of BM was administered d1+d2 q 3 weeks. The starting dose was 120 mg m−2 per day and dose increments of 20 mg m−2 were used. Plasma and urine samples were analysed using validated high-performance liquid chromatography/fluorescence assays. Fifteen patients were enrolled. They received a median of two cycles (range 1–8). The MTD was reached at the fourth dose level. Thrombocytopaenia (grade 4) was dose limiting in two of three patients at 180 mg m−2. One patient also experienced febrile neutropaenia. Lymphocytopaenia (grade 4) was present in every patient. Nonhaematologic toxicity including cardiac toxicity was not dose limiting with this schedule. Mean plasma Pk values of BM were tmax 35 min, t1/2 49.1 min, Vd 18.3 l m−2, and clearance 265 ml min−1 m−2. The mean total amount of BM and its metabolites recovered in the first micturition was 8.3% (range 2.7–26%). The MTD of BM in the present dose schedule was 180 mg m−2 on day 1+2. Thrombocytopaenia was dose limiting. The recommended dose for future phase II trials with this schedule is 160 mg m−2 per day

    Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation

    Get PDF
    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    ANTARES search for point-sources of neutrinos using astrophysical catalogs: a likelihood stacking analysis

    Full text link
    A search for astrophysical point-like neutrino sources using the data collected by the ANTARES detector between January 29, 2007 and December 31, 2017 is presented. A likelihood stacking method is used to assess the significance of an excess of muon neutrinos inducing track-like events in correlation with the location of a list of possible sources. Different sets of objects are tested in the analysis: a) a sub-sample of the \textit{Fermi} 3LAC catalog of blazars, b) a jet-obscured AGN population, c) a sample of soft gamma-ray selected radio galaxies, d) a star-forming galaxy catalog , and e) a public sample of 56 very-high-energy track events from the IceCube experiment. None of the tested sources shows a significant association with the sample of neutrinos detected by ANTARES. The smallest p-value is obtained for the radio galaxies catalog with an equal weights hypothesis, with a pre-trial p-value equivalent to a 2.8σ2.8 \, \sigma excess, equivalent to 1.6σ1.6 \, \sigma post-trial. In addition, the results of a dedicated analysis for the blazar MG3 J225517+2409 are also reported: this source is found to be the most significant within the \textit{Fermi} 3LAC sample, with 5 ANTARES events located at less than one degree from the source. This blazar showed evidence of flaring activity in \textit{Fermi} data, in space-time coincidence with a high-energy track detected by IceCube. An \emph{a posteriori} significance of 2.0σ2.0\, \sigma for the combination of ANTARES and IceCube data is reported

    Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope

    Get PDF
    [EN] The ANTARES detector is an undersea neutrino telescope in the Mediterranean Sea. The search for pointlike neutrino sources is one of the main goals of the ANTARES telescope, requiring a reliable method to evaluate the detector angular resolution and pointing accuracy. This work describes the study of the Sun ¿shadow¿ effect with the ANTARES detector. The shadow is the deficit in the atmospheric muon flux in the direction of the Sun caused by the absorption of the primary cosmic rays. This analysis is based on the data collected between 2008 and 2017 by the ANTARES telescope. The observed statistical significance of the Sun shadow detection is 3.7¿, with an estimated angular resolution of 0.59° +- 0.10°for downward-going muons. The pointing accuracy is found to be consistent with the expectations and no evidence of systematic pointing shifts is observed.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique, Commissariat `a l'' energie atomique et aux energies alternatives, Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France, LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), R ' egion Ile-de-France (DIM-ACAV), Region Alsace (contract CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung, Germany; Istituto Nazionale di Fisica Nucleare, Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek, the Netherlands; Council of the President of the Russian Federation for Young Scientists and Leading Scientific Schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (refs. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.... (2020). Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope. Physical Review D: covering particles, fields, gravitation, and cosmology. 102(12):1-7. https://doi.org/10.1103/PhysRevD.102.122007S1710212Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103Alexandreas, D. E., Allen, R. C., Berley, D., Biller, S. D., Burman, R. L., Cady, D. R., … Zhang, W. (1991). Observation of shadowing of ultrahigh-energy cosmic rays by the Moon and the Sun. Physical Review D, 43(5), 1735-1738. doi:10.1103/physrevd.43.1735Andreyev, Y. M., Zakidyshev, V. N., Karpov, S. N., & Khodov, V. N. (2002). Cosmic Research, 40(6), 559-564. doi:10.1023/a:1021553713199Borione, A., Catanese, M., Covault, C. E., Cronin, J. W., Fick, B. E., Gibbs, K. G., … van der Velde, J. C. (1994). Observation of the shadows of the Moon and Sun using 100 TeV cosmic rays. Physical Review D, 49(3), 1171-1177. doi:10.1103/physrevd.49.1171Cobb, J. H., Marshak, M. L., Allison, W. W. M., Alner, G. J., Ayres, D. S., Barrett, W. L., … Wall, D. (2000). Observation of a shadow of the Moon in the underground muon flux in the Soudan 2 detector. Physical Review D, 61(9). doi:10.1103/physrevd.61.092002Bartoli, B., Bernardini, P., Bi, X. J., Bleve, C., Bolognino, I., Branchini, P., … Cao, Z. (2012). Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector. Physical Review D, 85(2). doi:10.1103/physrevd.85.022002Abeysekara, A. U., Albert, A., Alfaro, R., Alvarez, C., Álvarez, J. D., Arceo, R., … Belmont-Moreno, E. (2018). Constraining the p¯/p ratio in TeV cosmic rays with observations of the Moon shadow by HAWC. Physical Review D, 97(10). doi:10.1103/physrevd.97.102005Adamson, P., Andreopoulos, C., Ayres, D. S., Backhouse, C., Barr, G., Barrett, W. L., … Bock, G. J. (2011). Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon. Astroparticle Physics, 34(6), 457-466. doi:10.1016/j.astropartphys.2010.10.010Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2019). Detection of the Temporal Variation of the Sun’s Cosmic Ray Shadow with the IceCube Detector. The Astrophysical Journal, 872(2), 133. doi:10.3847/1538-4357/aaffd1Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Barrios-Martít, J. (2018). The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope. The European Physical Journal C, 78(12). doi:10.1140/epjc/s10052-018-6451-3First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope. (2013). Journal of Cosmology and Astroparticle Physics, 2013(03), 006-006. doi:10.1088/1475-7516/2013/03/006Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astroparticle Physics, 34(9), 652-662. doi:10.1016/j.astropartphys.2011.01.003BECHERINI, Y., MARGIOTTA, A., SIOLI, M., & SPURIO, M. (2006). A parameterisation of single and multiple muons in the deep water or ice. Astroparticle Physics, 25(1), 1-13. doi:10.1016/j.astropartphys.2005.10.005Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12), 915-923. doi:10.1016/j.cpc.2008.07.014Yepes-Ramírez, H. (2013). Characterization of optical properties of the site of the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 725, 203-206. doi:10.1016/j.nima.2012.11.143Fusco, L. A., & Margiotta, A. (2016). The Run-by-Run Monte Carlo simulation for the ANTARES experiment. EPJ Web of Conferences, 116, 02002. doi:10.1051/epjconf/201611602002Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope. Physical Review D, 96(8). doi:10.1103/physrevd.96.082001Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Belhorma, B. (2020). ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. The Astrophysical Journal, 892(2), 92. doi:10.3847/1538-4357/ab7afbAdrián-Martínez, S., Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., … Basa, S. (2014). SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. The Astrophysical Journal, 786(1), L5. doi:10.1088/2041-8205/786/1/l

    Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data

    Full text link
    In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network (AMON) has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between July 2015 and February 2020 with a livetime of 4.39 years. Over this time period, 3 coincident events with an estimated false-alarm rate of <1< 1 coincidence per year were found. This number is consistent with background expectations.Comment: 12 pages, 5 figures, 3 table

    KM3NeT broadcast optical data transport system

    Get PDF
    The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed

    Limits on the nuclearite flux using the ANTARES neutrino telescope

    Full text link
    In this work, a search for nuclearites of strange quark matter by using nine years of ANTARES data taken in the period 2009-2017 is presented. The passage through matter of these particles is simulated %according to the model of de R\'{u}jula and Glashow taking into account a detailed description of the detector response to nuclearites and of the data acquisition conditions. A down-going flux of cosmic nuclearites with Galactic velocities (β=103\beta = 10^{-3}) was considered for this study. The mass threshold for detecting these particles at the detector level is \mbox{ 4×10134 \times 10^{13} GeV/c2^{2}}. Upper limits on the nuclearite flux for masses up to 101710^{17} GeV/c2^{2} at the level of 5×1017\sim 5 \times 10^{-17} cm2^{-2} s1^{-1} sr1^{-1} are obtained. These are the first upper limits on nuclearites established with a neutrino telescope and the most stringent ever set for Galactic velocities.Comment: 17 pages, 7 figure
    corecore