1,418 research outputs found
Solar wind reconnection exhausts in the inner heliosphere observed by helios and detected via machine learning
Reconnecting current sheets in the solar wind play an important role in the dynamics of the heliosphere and offer an opportunity to study magnetic reconnection exhausts under a wide variety of inflow and magnetic shear conditions. However, progress in understanding reconnection can be frustrated by the difficulty of finding events in long time-series data. Here we describe a new method to detect magnetic reconnection events in the solar wind based on machine learning, and apply it to Helios data in the inner heliosphere. The method searches for known solar wind reconnection exhaust features, and parameters in the algorithm are optimized to maximize the Matthews Correlation Coefficient using a training set of events and non-events. Applied to the whole Helios data set, the trained algorithm generated a candidate set of events that were subsequently verified by hand, resulting in a database of 88 events. This approach offers a significant reduction in construction time for event databases compared to purely manual approaches. The database contains events covering a range of heliospheric distances from ~0.3 to ~1 au, and a wide variety of magnetic shear angles, but is limited by the relatively coarse time resolution of the Helios data. Analysis of these events suggests that proton heating by reconnection in the inner heliosphere depends on the available magnetic energy in a manner consistent with observations in other regimes such as at the Earth's magnetopause, suggesting this may be a universal feature of reconnection
Catastrophic Photo-z Errors and the Dark Energy Parameter Estimates with Cosmic Shear
We study the impact of catastrophic errors occurring in the photometric
redshifts of galaxies on cosmological parameter estimates with cosmic shear
tomography. We consider a fiducial survey with 9-filter set and perform photo-z
measurement simulations. It is found that a fraction of 1% galaxies at
z_{spec}~0.4 is misidentified to be at z_{phot}~3.5. We then employ both chi^2
fitting method and the extension of Fisher matrix formalism to evaluate the
bias on the equation of state parameters of dark energy, w_0 and w_a, induced
by those catastrophic outliers. By comparing the results from both methods, we
verify that the estimation of w_0 and w_a from the fiducial 5-bin tomographic
analyses can be significantly biased. To minimize the impact of this bias, two
strategies can be followed: (A) the cosmic shear analysis is restricted to
0.5<z<2.5 where catastrophic redshift errors are expected to be insignificant;
(B) a spectroscopic survey is conducted for galaxies with 3<z_{phot}<4. We find
that the number of spectroscopic redshifts needed scales as N_{spec} \propto
f_{cata}\times A where f_{cata}=1% is the fraction of catastrophic redshift
errors (assuming a 9-filter photometric survey) and A is the survey area. For
A=1000 {deg}^2, we find that N_{spec}>320 and 860 respectively in order to
reduce the joint bias in (w_0,w_a) to be smaller than 2\sigma and 1\sigma. This
spectroscopic survey (option B) will improve the Figure of Merit of option A by
a factor \times 1.5 thus making such a survey strongly desirable.Comment: 25 pages, 9 figures. Revised version, as accepted for publication in
Ap
On the determination of the deceleration parameter from Supernovae data
Supernovae searches have shown that a simple matter-dominated and
decelerating universe should be ruled out. However a determination of the
present deceleration parameter through a simple kinematical description
is not exempt of possible drawbacks. We show that, with a time dependent
equation of state for the dark energy, a bias is present for : models
which are very far from the so-called Concordance Model can be accommodated by
the data and a simple kinematical analysis can lead to wrong conclusions. We
present a quantitative treatment of this bias and we present our conclusions
when a possible dynamical dark energy is taken into account.Comment: 4 pages, 3 figures, submitte
Torsion, an alternative to dark matter?
We confront Einstein-Cartan's theory with the Hubble diagram. An affirmative
answer to the question in the title is compatible with today's supernovae data.Comment: 14 pp, 3 figures. Version 2 matches the version published in Gen.
Rel. Grav., references added. Version 3 corrects a factor 3 in Cartan's
equations to become
Beyond Einstein-Cartan gravity: Quadratic torsion and curvature invariants with even and odd parity including all boundary terms
Recently, gravitational gauge theories with torsion have been discussed by an
increasing number of authors from a classical as well as from a quantum field
theoretical point of view. The Einstein-Cartan(-Sciama-Kibble) Lagrangian has
been enriched by the parity odd pseudoscalar curvature (Hojman, Mukku, and
Sayed) and by torsion square and curvature square pieces, likewise of even and
odd parity. (i) We show that the inverse of the so-called Barbero-Immirzi
parameter multiplying the pseudoscalar curvature, because of the topological
Nieh-Yan form, can only be appropriately discussed if torsion square pieces are
included. (ii) The quadratic gauge Lagrangian with both parities, proposed by
Obukhov et al. and Baekler et al., emerges also in the framework of Diakonov et
al.(2011). We establish the exact relations between both approaches by applying
the topological Euler and Pontryagin forms in a Riemann-Cartan space expressed
for the first time in terms of irreducible pieces of the curvature tensor.
(iii) Only in a Riemann-Cartan spacetime, that is, in a spacetime with torsion,
parity violating terms can be brought into the gravitational Lagrangian in a
straightforward and natural way. Accordingly, Riemann-Cartan spacetime is a
natural habitat for chiral fermionic matter fields.Comment: 12 page latex, as version 2 an old file was submitted by mistake,
this is now the real corrected fil
Constraining Type Ia supernova models: SN 2011fe as a test case
The nearby supernova SN 2011fe can be observed in unprecedented detail.
Therefore, it is an important test case for Type Ia supernova (SN Ia) models,
which may bring us closer to understanding the physical nature of these
objects. Here, we explore how available and expected future observations of SN
2011fe can be used to constrain SN Ia explosion scenarios. We base our
discussion on three-dimensional simulations of a delayed detonation in a
Chandrasekhar-mass white dwarf and of a violent merger of two white
dwarfs-realizations of explosion models appropriate for two of the most
widely-discussed progenitor channels that may give rise to SNe Ia. Although
both models have their shortcomings in reproducing details of the early and
near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory
(SNfactory), the overall match with the observations is reasonable. The level
of agreement is slightly better for the merger, in particular around maximum,
but a clear preference for one model over the other is still not justified.
Observations at late epochs, however, hold promise for discriminating the
explosion scenarios in a straightforward way, as a nucleosynthesis effect leads
to differences in the 55Co production. SN 2011fe is close enough to be followed
sufficiently long to study this effect.Comment: Accepted for publication in The Astrophysical Journal Letter
Weak Lensing from Space I: Instrumentation and Survey Strategy
A wide field space-based imaging telescope is necessary to fully exploit the
technique of observing dark matter via weak gravitational lensing. This first
paper in a three part series outlines the survey strategies and relevant
instrumental parameters for such a mission. As a concrete example of hardware
design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using
SNAP engineering models, we quantify the major contributions to this
telescope's Point Spread Function (PSF). These PSF contributions are relevant
to any similar wide field space telescope. We further show that the PSF of SNAP
or a similar telescope will be smaller than current ground-based PSFs, and more
isotropic and stable over time than the PSF of the Hubble Space Telescope. We
outline survey strategies for two different regimes - a ``wide'' 300 square
degree survey and a ``deep'' 15 square degree survey that will accomplish
various weak lensing goals including statistical studies and dark matter
mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio
Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy
The Supernova / Acceleration Probe (SNAP) is a proposed space-based
experiment designed to study the dark energy and alternative explanations of
the acceleration of the Universe's expansion by performing a series of
complementary systematics-controlled measurements. We describe a
self-consistent reference mission design for building a Type Ia supernova
Hubble diagram and for performing a wide-area weak gravitational lensing study.
A 2-m wide-field telescope feeds a focal plane consisting of a 0.7
square-degree imager tiled with equal areas of optical CCDs and near infrared
sensors, and a high-efficiency low-resolution integral field spectrograph. The
SNAP mission will obtain high-signal-to-noise calibrated light-curves and
spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A
wide-field survey covering one thousand square degrees resolves ~100 galaxies
per square arcminute. If we assume we live in a cosmological-constant-dominated
Universe, the matter density, dark energy density, and flatness of space can
all be measured with SNAP supernova and weak-lensing measurements to a
systematics-limited accuracy of 1%. For a flat universe, the
density-to-pressure ratio of dark energy can be similarly measured to 5% for
the present value w0 and ~0.1 for the time variation w'. The large survey area,
depth, spatial resolution, time-sampling, and nine-band optical to NIR
photometry will support additional independent and/or complementary dark-energy
measurement approaches as well as a broad range of auxiliary science programs.
(Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go
Two Loop Scalar Self-Mass during Inflation
We work in the locally de Sitter background of an inflating universe and
consider a massless, minimally coupled scalar with a quartic self-interaction.
We use dimensional regularization to compute the fully renormalized scalar
self-mass-squared at one and two loop order for a state which is released in
Bunch-Davies vacuum at t=0. Although the field strength and coupling constant
renormalizations are identical to those of lfat space, the geometry induces a
non-zero mass renormalization. The finite part also shows a sort of growing
mass that competes with the classical force in eventually turning off this
system's super-acceleration.Comment: 31 pages, 5 figures, revtex4, revised for publication with extended
list of reference
The detection of neutron clusters
A new approach to the production and detection of bound neutron clusters is
presented. The technique is based on the breakup of beams of very neutron-rich
nuclei and the subsequent detection of the recoiling proton in a liquid
scintillator. The method has been tested in the breakup of 11Li, 14Be and 15B
beams by a C target. Some 6 events were observed that exhibit the
characteristics of a multineutron cluster liberated in the breakup of 14Be,
most probably in the channel 10Be+4n. The various backgrounds that may mimic
such a signal are discussed in detail.Comment: 11 pages, 12 figures, LPCC 01-1
- …