227 research outputs found
Interplay between low-carbon energy transitions and national security : An analysis of policy integration and coherence in Estonia, Finland and Scotland
Highlights
• Combining policy coherence and integration with sustainability transitions.
• Policy document analysis explored the interplay of energy and security policies.
• Security and defence at times integrated in energy policy, particularly in Estonia.
• Lack of coherence between low-carbon energy transition and national security policy.
• Security inferences of growing energy niches little covered in strategy documents.Sustainable Development Goals aim for a better future, but gains are threatened by conflict and governance failures, exacerbated by climate change. While research on energy security is well-established, conceptual-analytical research on sustainability transitions has paid little attention to security threats as factors influencing transitions or security policy as part of policy mixes. This paper combines policy coherence and integration analysis of energy and security strategy documents with sustainability transitions’ research, considering how landscape pressures and energy niches are presented in documents pertaining to Estonia, Finland and Scotland during 2006–2020. The findings show that security and energy policies present a functional overlap. Yet, policy integration and coherence are insufficiently addressed, conflicts created by coexisting low-carbon and hydrocarbon-based security considerations. An increasingly multifaceted landscape creates a complicated policy environment where pursuing policy coherence becomes harder. Despite the accelerating energy transition, the security implications of energy niches have received too little attention
Combined and single effects of pesticide carbaryl and toxic Microcystis aeruginosa on the life history of Daphnia pulicaria
The combined influence of a pesticide (carbaryl) and a cyanotoxin (microcystin LR) on the life history of Daphnia pulicaria was investigated. At the beginning of the experiments animals were pulse exposed to carbaryl for 24 h and microcystins were delivered bound in Microcystis’ cells at different, sub-lethal concentrations (chronic exposure). In order to determine the actual carbaryl concentrations in the water LC–MS/MS was used. For analyses of the cyanotoxin concentration in Daphnia’s body enzyme-linked immunosorbent assay (ELISA) was used. Individual daphnids were cultured in a flow-through system under constant light (16 h of light: 8 h of dark), temperature (20°C), and food conditions (Scenedesmus obliquus, 1 mg of C l−1). The results showed that in the treatments with carbaryl egg numbers per female did not differ significantly from controls, but the mortality of newborns increased significantly. Increasing microcystin concentrations significantly delayed maturation, reduced size at first reproduction, number of eggs, and newborns. The interaction between carbaryl and Microcystis was highly significant. Animals matured later and at a smaller size than in controls. The number of eggs per female was reduced as well. Moreover, combined stressors caused frequent premature delivery of offspring with body deformations such as dented carapax or an undeveloped heart. This effect is concluded to be synergistic and could not be predicted from the effects of the single stressors.
The swinholide biosynthesis gene cluster from a terrestrial cyanobacterium, Nostoc sp. strain UHCC 0450
Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge Theonella sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium Nostoc sp. strain UHCC 0450. We located the 85-kb trans-AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of Nostoc sp. UHCC 0450. The swinholide and misakinolide biosynthesis gene clusters share an almost identical order of catalytic domains, with 85% nucleotide sequence identity, and they group together in phylogenetic analysis. Our results resolve speculation around the true producer of swinholides and demonstrate that bacteria belonging to two distantly related phyla both produce structural variants of the same natural product. In addition, we described a biosynthesis cluster from Anabaena sp. strain UHCC 0451 for the synthesis of the cytotoxic and antifungal scytophycin. All of these biosynthesis gene clusters were closely related to each other and created a group of cytotoxic macrolide compounds produced by trans-AT PKSs of cyanobacteria and proteobacteria. © 2018 American Society for Microbiology.We thank Lyudmila Saari for purifying the cyanobacterial strains into axenic cultures. This work was supported by the Academy of Finland grants 258827 and 273798 to K.S. and 288235 to P.P. A.H. is a student at the Doctoral Programme in Microbiology and Biotechnology. A.A. was funded in part by the Strategic Funding grant UID/Multi/ 04423/2013 through national funds provided by the Portuguese National Science Foundation (FCT) and the European Regional Development Fund (ERDF) in the framework of the program PT2020, by the European Structural and Investment Funds (ESIF) through the Competitiveness and Internationalization Operational Program-COMPETE 2020, and by the Structured Programs of R&D&I INNOVMAR (NORTE-01-0145-FEDER-000035-NOVELMAR), CORAL NORTE (NORTE-01-0145-FEDER-000036), and MarInfo (NORTE-01-0145-FEDER-000031), funded by the Northern Regional Operational Pro-gram (NORTE2020) through the ERDF. The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publicatio
The Council of Europe's Approach towards Ageism
In this chapter, I examine the degree of interest in ageism among Council of
Europe members, and the degree of interest in its elimination through the Council
of Europe forum. I also examine the interpretation of the concept of ageism by various
Council of Europe institutions. Finally, I explore the Council’s willingness and
ability to eliminate or at least mitigate ageism effect
The apoptosis-inducing activity towards leukemia and lymphoma cells in a cyanobacterial culture collection is not associated with mouse bioassay toxicity
Cyanobacteria (83 strains and seven natural populations) were screened for content of apoptosis (cell death)-inducing activity towards neoplastic cells of the immune (jurkat acute T-cell lymphoma) and hematopoetic (acute myelogenic leukemia) lineage. Apoptogenic activity was frequent, even in strains cultured for decades, and was unrelated to whether the cyanobacteria had been collected from polar, temperate, or tropic environments. The activity was more abundant in the genera Anabaena and Microcystis compared to Nostoc, Phormidium, Planktothrix, and Pseudanabaena. Whereas the T-cell lymphoma apoptogens were frequent in organic extracts, the cell death-inducing activity towards leukemia cells resided mainly in aqueous extracts. The cyanobacteria were from a culture collection established for public health purposes to detect toxic cyanobacterial blooms, and 54 of them were tested for toxicity by the mouse bioassay. We found no correlation between the apoptogenic activity in the cyanobacterial isolates with their content of microcystin, nor with their ability to elicit a positive standard mouse bioassay. Several strains produced more than one apoptogen, differing in biophysical or biological activity. In fact, two strains contained microcystin in addition to one apoptogen specific for the AML cells, and one apoptogen specific for the T-cell lymphoma. This study shows the potential of cyanobacterial culture collections as libraries for bioactive compounds, since strains kept in cultures for decades produced apoptogens unrelated to the mouse bioassay detectable bloom-associated toxins
A Comparative Study on Three Analytical Methods for the Determination of the Neurotoxin BMAA in Cyanobacteria
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been considered a serious health threat because of its putative role in multiple neurodegenerative diseases. First reports on BMAA concentrations in cyanobacteria were alarming: nearly all cyanobacteria were assumed to contain high BMAA concentrations, implying ubiquitous exposure. Recent studies however question this presence of high BMAA concentrations in cyanobacteria. To assess the real risk of BMAA to human health, this discrepancy must be resolved. We therefore tested whether the differences found could be caused by the analytical methods used in different studies. Eight cyanobacterial samples and two control samples were analyzed by three commonly used methods: HPLC-FLD analysis and LC-MS/MS analysis of both derivatized and underivatized samples. In line with published results, HPLC-FLD detected relatively high BMAA concentrations in some cyanobacterial samples, while both LC-MS/MS methods only detected BMAA in the positive control (cycad seed sarcotesta). Because we could eliminate the use of different samples and treatments as causal factors, we demonstrate that the observed differences were caused by the analytical methods. We conclude that HPLC-FLD overestimated BMAA concentrations in some cyanobacterial samples due to its low selectivity and propose that BMAA might be present in (some) cyanobacteria, but in the low µg/g or ng/g range instead of the high µg/g range as sometimes reported before. We therefore recommend to use only selective and sensitive analytical methods like LC-MS/MS for BMAA analysis. Although possibly present in low concentrations in cyanobacteria, BMAA can still form a health risk. Recent evidence on BMAA accumulation in aquatic food chains suggests human exposure through consumption of fish and shellfish which expectedly exceeds exposure through cyanobacteria
Recreational and occupational field exposure to freshwater cyanobacteria – a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment
Cyanobacteria are common inhabitants of freshwater lakes and reservoirs throughout the world. Under favourable conditions, certain cyanobacteria can dominate the phytoplankton within a waterbody and form nuisance blooms. Case reports and anecdotal references dating from 1949 describe a range of illnesses associated with recreational exposure to cyanobacteria: hay fever-like symptoms, pruritic skin rashes and gastro-intestinal symptoms are most frequently reported. Some papers give convincing descriptions of allergic reactions while others describe more serious acute illnesses, with symptoms such as severe headache, pneumonia, fever, myalgia, vertigo and blistering in the mouth. A coroner in the United States found that a teenage boy died as a result of accidentally ingesting a neurotoxic cyanotoxin from a golf course pond. This death is the first recorded human fatality attributed to recreational exposure to cyanobacteria, although uncertainties surround the forensic identification of the suspected cyanotoxin in this case. We systematically reviewed the literature on recreational exposure to freshwater cyanobacteria. Epidemiological data are limited, with six studies conducted since 1990. Statistically significant increases in symptoms were reported in individuals exposed to cyanobacteria compared to unexposed counterparts in two Australian cohort studies, though minor morbidity appeared to be the main finding. The four other small studies (three from the UK, one Australian) did not report any significant association. However, the potential for serious injury or death remains, as freshwater cyanobacteria under bloom conditions are capable of producing potent toxins that cause specific and severe dysfunction to hepatic or central nervous systems. The exposure route for these toxins is oral, from ingestion of recreational water, and possibly by inhalation. A range of freshwater microbial agents may cause acute conditions that present with features that resemble illnesses attributed to contact with cyanobacteria and, conversely, acute illness resulting from exposure to cyanobacteria or cyanotoxins in recreational waters could be misdiagnosed. Accurately assessing exposure to cyanobacteria in recreational waters is difficult and unreliable at present, as specific biomarkers are unavailable. However, diagnosis of cyanobacteria-related illness should be considered for individuals presenting with acute illness following freshwater contact if a description is given of a waterbody visibly affected by planktonic mass development
The Smallest Known Genomes of Multicellular and Toxic Cyanobacteria: Comparison, Minimal Gene Sets for Linked Traits and the Evolutionary Implications
Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N2) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N2 fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N2 fixation capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch revealed a common minimal gene set for each of these cyanobacterial traits
Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu
Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation
- …