111 research outputs found

    Integration of Arrival-Time Datasets for Consistent Quality Control: A Case Study of Amphibious Experiments along the Middle America Trench

    Get PDF
    We have integrated waveform and arrival-onset data collected in Costa Rica as part of the National Science Foundation (NSF)-sponsored Costa Rica Seismogenic Zone Experiment (CRSEIZE) and along central Costa Rica and Nicaragua as part of the German SFB 574 program. The five arrays, composed of different sensor types (one-and three-component land and ocean bottom seismometers and hydrophones), were archived using different software packages (Antelope and SEISAN) and were automatically and manually picked using various quality criteria resulting in a disparate set of pick weights. We evaluate pick quality using automated arrival detection and picking algorithm based on the wavelet transform and Akaike information criterion picker. The consistency of the arrival information over various scales provides a basis for assigning a quality to the analyst pick. Approximately 31% of P arrival times and 26% of S times have been classified as high-quality picks (quality 0-1). An additional 21% of P times and 27% of S arrivals are good quality (quality 2-3). The revised quality picks are mapped directly into new pick weights for inversion studies. We explore the effect of new weighting and removal of poor data by relocating hypocenters through a minimum 1D velocity model and conducting double-difference local earthquake tomography (LET). Analysis of the hypocenter relocation and seismic velocity tomography results suggest that using the improved quality determinations have a greater effect on improving sharpness in the velocity images than on the magnitude of hypocentral movement

    Seismogenic zone structure of the southern Middle America Trench, Costa Rica

    Get PDF
    The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ~300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region. These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity. This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level

    Geodetic and seismic constraints on some seismogenic zone processes in Costa Rica

    Get PDF
    New seismic and geodetic data from Costa Rica provide insight into seismogenic zone processes in Central America, where the Cocos and Caribbean plates converge. Seismic data are from combined land and ocean bottom deployments in the Nicoya peninsula in northern Costa Rica and near the Osa peninsula in southern Costa Rica. In Nicoya, inversion of GPS data suggests two locked patches centered at 14 ± 2 and 39 ± 6 km depth. Interplate microseismicity is concentrated in the more freely slipping intermediate zone, suggesting that small interseismic earthquakes may not accurately outline the updip limit of the seismogenic zone, the rupture zone for future large earthquakes, at least over the short (∼1 year) observation period. We also estimate northwest motion of a coastal “sliver block” at 8 ± 3 mm/yr, probably related to oblique convergence. In the Osa region to the south, convergence is orthogonal to the trench. Cocos-Caribbean relative motion is partitioned here, with ∼8 cm/yr on the Cocos-Panama block boundary (including a component of permanent shortening across the Fila Costeña fold and thrust belt) and ∼1 cm/yr on the Panama block–Caribbean boundary. The GPS data suggest that the Cocos plate–Panama block boundary is completely locked from ∼10–50 km depth. This large locked zone, as well as associated forearc and back-arc deformation, may be related to subduction of the shallow Cocos Ridge and/or younger lithosphere compared to Nicoya, with consequent higher coupling and compressive stress in the direction of plate convergence

    Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis

    Get PDF
    [1] Fluid distribution in convergent margins is by most accounts closely related to tectonics. This association has been widely studied at accretionary prisms, but at half of the Earth's convergent margins, tectonic erosion grinds down overriding plates, and here fluid distribution and its relation to tectonics remain speculative. Here we present a new conceptual model for the hydrological system of erosional convergent margins. The model is based largely on new data and recently published observations from along the Middle America Trench offshore Nicaragua and Costa Rica, and it is consistent with observations from other erosional margins. The observations indicate that erosional margins possess previously unrecognized distinct hydrogeological systems: Most fluid contained in the sediment pores and liberated by early dehydration reactions drains from the plate boundary through a fractured upper plate to seep at the seafloor across the slope, rather than migrating along the décollement toward the deformation front as described for accretionary prisms. The observations indicate that the relative fluid abundance across the plate-boundary fault zone and fluid migration influence long-term tectonics and the transition from aseismic to seismogenic behavior. The segment of the plate boundary where fluid appears to be more abundant corresponds to the locus of long-term tectonic erosion, where tectonic thinning of the overriding plate causes subsidence and the formation of the continental slope. This correspondence between observations indicates that tectonic erosion is possibly linked to the migration of overpressured fluids into the overriding plate. The presence of overpressured fluids at the plate boundary is compatible with the highest flow rates estimated at slope seeps. The change from aseismic to seismogenic behavior along the plate boundary of the erosional margin begins where the amount of fluid at the fault declines with depth, indicating a control on interplate earthquakes. A previously described similar observation along accreting plate boundaries strongly indicates that fluid abundance exerts a first-order control on interplate seismogenesis at all types of subduction zones. We hypothesize that fluid depletion with depth increases grain-to-grain contact, increasing effective stress on the fault, and modifies fault zone architecture from a thick fault zone to a narrower zone of localized slip

    Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography

    Get PDF
    The subduction plate interface along the Nicoya Peninsula, Costa Rica, generates damaging large (Mw > 7.5) earthquakes. We present hypocenters and 3-D seismic velocity models (VP and VP/VS) calculated using simultaneous inversion of P- and S-wave arrival time data recorded from small magnitude, local earthquakes to elucidate seismogenic zone structure. In this region, interseismic cycle microseismicity does not uniquely define the potential rupture extent of large earthquakes. Plate interface microseismicity extends from 12 to 26 and from 17 to 28 km below sea level beneath the southern and northern Nicoya Peninsula, respectively. Microseismicity offset across the plate suture of East Pacific Rise-derived and Cocos-Nazca Spreading Center-derived oceanic lithosphere is ∼5 km, revising earlier estimates suggesting ∼10 km of offset. Interplate seismicity begins downdip of increased locking along the plate interface imaged using GPS and a region of low VP along the plate interface. The downdip edge of plate interface microseismicity occurs updip of the oceanic slab and continental Moho intersection, possibly due to the onset of ductile behaviour. Slow forearc mantle wedge P-wave velocities suggest 20–30 per cent serpentinization across the Nicoya Peninsula region while calculated VP/VS values suggest 0–10 per cent serpentinization. Interpretation of VP/VS resolution at depth is complicated however due to ray path distribution. We posit that the forearc mantle wedge is regionally serpentinized but may still be able to sustain rupture during the largest seismogenic zone earthquakes

    How authentic leadership influences team performance:the mediating role of team reflexivity

    Get PDF
    This study examines how authentic leadership influences team performance via the mediating mechanism of team reflexivity. Adopting a self-regulatory perspective, we propose that authentic leadership will predict the specific team regulatory process of reflexivity, which in turn will be associated with two outcomes of team performance; effectiveness and productivity. Using survey data from 53 teams in three organizations in the United Kingdom and Greece and controlling for collective trust, we found support for our stated hypotheses with the results indicating a significant fully mediated relationship. As predicted the self-regulatory behaviors inherent in the process of authentic leadership served to collectively shape team behavior, manifesting in the process of team reflexivity, which, in turn, positively predicted team performance. We conclude with a discussion of how this study extends theoretical understanding of authentic leadership in relation to teamwork and delineate several practical implications for leaders and organizations
    corecore