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Integration of Arrival-Time Datasets for Consistent Quality Control:

A Case Study of Amphibious Experiments along
the Middle America Trench
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Martin Thorwart, Yvonne Dzierma, and Ivonne G. Arroyo

Abstract We have integrated waveform and arrival-onset data collected in Costa
Rica as part of the National Science Foundation (NSF)-sponsored Costa Rica Seismo-
genic Zone Experiment (CRSEIZE) and along central Costa Rica and Nicaragua as part
of the German SFB 574 program. The five arrays, composed of different sensor types
(one- and three-component land and ocean bottom seismometers and hydrophones),
were archived using different software packages (Antelope and SEISAN) and were
automatically and manually picked using various quality criteria resulting in a dispa-
rate set of pick weights. We evaluate pick quality using automated arrival detection
and picking algorithm based on the wavelet transform and Akaike information cri-
terion picker. The consistency of the arrival information over various scales provides
a basis for assigning a quality to the analyst pick. Approximately 31% of P arrival
times and 26% of S times have been classified as high-quality picks (quality 0—1). An
additional 21% of P times and 27% of S arrivals are good quality (quality 2-3). The
revised quality picks are mapped directly into new pick weights for inversion studies.
We explore the effect of new weighting and removal of poor data by relocating hypo-
centers through a minimum 1D velocity model and conducting double-difference lo-
cal earthquake tomography (LET). Analysis of the hypocenter relocation and seismic
velocity tomography results suggest that using the improved quality determinations
have a greater effect on improving sharpness in the velocity images than on the mag-
nitude of hypocentral movement.

Online Material: Figures of waveforms, event statistics, and tomography; and
tables of station and event parameters, station qualities, velocity model, and hypocen-

tral parameters.

Introduction

Imaging the Earth with ever increasing resolution using
travel-time inversion techniques has become possible due
to the increasing number and quality of seismic stations
worldwide. Large-scale experiments such as USArray and ex-
panding global and countrywide networks produce large
travel-time datasets that can be integrated to obtain detailed
images of Earth and its dynamic processes. Despite the sheer
quantity and quality of the data currently being collected,
resolution and uncertainty of inverse solutions are limited
by the accuracy of individual arrival-time measurements.

*Also at University of North Alabama, Department of Physics and Earth
Science, One Harrison Plaza, Florence, Alabama 35632.

"Now at Southern Methodist University, PO Box 750395, Dallas, Texas
75275-0395.

For example, in seismic velocity tomography, calculated
travel-time residuals are attributed to differences between
the starting model used in the inversion problem and the actual
Earth structure. Measured arrival-time errors are mapped into
the observed travel times and thus lead to inaccurate residuals,
resulting in noisy tomographic images. These errors com-
monly occur due to inconsistent handpicking because of
noise, personal bias, or filtering (Diehl and Kissling, 2007).

Tomography accuracy does not solely depend on travel-
time accuracy, but other factors such as model parameters,
ray tracing, and inversion algorithms have largely been opti-
mized in the past couple of decades through advances in for-
ward modeling techniques and increased computing power
(e.g., Thurber, 1983; Um and Thurber, 1987; Virieux et al.,
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Figure 1.
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Nicaragua/Costa Rica study area along the Middle America subduction zone. (a) Station locations for the five arrays. Seismic

stations for the OSA array are represented by the black triangles, NICOYA with black circles, QUE with white squares, NICAT with dia-
monds, and JAC with gray squares. The incoming plate shows significant variability along strike in plate age and origin (Barckhausen e? al.,
2001). (b) Black circles identify seismicity recorded during the CRSEIZE/SFB experiments. The reference events are shown as white circles.
Cross sections that are discussed in the tomography section are shown by the black lines labeled A, B, C, and D.

1988; Podvin and Lecomte, 1991; Haslinger and Kissling,
2001; Husen and Kissling, 2001). Inconsistencies in the
travel-time datasets remain a significant source of unmodeled
error (Diehl ef al., 2009; Husen et al., 2009). With larger and
larger datasets becoming available, it becomes tedious, if not
impossible, to personally review every arrival pick, espe-
cially when trying to integrate several datasets with each
recording months to years worth of seismic data.

The complexity of seismic waveforms at local to
regional distances can make the process of handpicking the
major P and § arrivals difficult. Often the identification of
phases is complicated by the close arrivals of many different
phases at short hypocenter to station distances. Even a single
seismologist will introduce their own subjectivity as to where
they interpret the change of amplitude and change in primary
frequency that denotes the arrival of the particular phase
(Diehl and Kissling, 2007). Despite error, we assume, be-
cause of years of practice and the power of the human brain
to analyze and interpret variability, that actual analyst picked
arrivals are better than the alternative automatic picks.
Though it has been shown that human and automatic picks
are comparable (Sleeman and van Eck, 1999; Leonard, 2000;
Zhang et al., 2003), typical automatic picking does not
provide a tangible assessment of the actual quality of the
automatic pick. Significant improvement in resolution and
reliability of local to regional tomographic studies can be
made by automatically repicking and weighting data (Di
Stefano et al., 2006; Diehl et al., 2009), resulting in either
adjusted picked onsets or increased accuracy differential
times. Picking error can additionally be reduced using cross
correlation (CC) of similar events (Got et al., 1994; Dodge
et al., 1995; Shearer, 1997; Rubin et al., 1998; Waldhauser
and Ellsworth, 2000; Rowe et al., 2002).

Considering the above, it would be desirable to combine
the experience of a seismologist with the consistency of a
computer algorithm to verify arrival onsets and prescribe a
quality to the pick. Here we use an Akaike information cri-

terion (AIC)-based automatic pick algorithm (Zhang et al.,
2003) that utilizes wavelet transforms to quantify the quality
of analyst identified (or original processing) arrival-onset
times collected from five amphibious passive seismic experi-
ments along the Middle America subduction zone. The goal
is to compile the highest quality dataset of P- and S-wave
absolute and differential times for use in studies of the sub-
duction seismogenic zone. The automated quality determina-
tion presented here results in more accurate and consistent
weighting and identifies inaccurate analyst-determined phase
onsets or errors in the original phase identification process-
ing. In addition, P- and S-wave differential times are calcu-
lated using CC with bispectrum verification (BCSEIS, Du
et al., 2004) to further adjust differential times for more
accurate data. The effect of the new weighting and removal
of phases on hypocentral location is explored using reloca-
tion through a minimum 1D velocity model, which uses ab-
solute data, and in double-difference local earthquake
tomography (LET), which uses both absolute and differential
data. The resulting high-quality integrated set of P and §
absolute and differential times can be used for a wide range
of studies, and the data preparation outlined below provides
an automated approach to consistently quantify pick quality
in large local earthquake datasets.

Data

The Nicaragua/Costa Rica segment of the Middle
America subduction zone has been a focus site of seismo-
genic zone studies, in part because the Osa and Nicoya pen-
insulas extend close to the trench and because the region
exhibits high along-strike variability in subduction char-
acteristics (Fig. la). Previous studies of seismic velocity,
attenuation, and earthquake location have shown that seis-
mogenic zone behavior is strongly influenced by plate struc-
ture, temperature, and fluid-related processes (Hyndman and
Wang, 1993; Protti et al., 1994, 1995, 2001; von Huene et al.,
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1995; Hyndman et al, 1997; Barckhausen et al., 2001;
Fisher et al., 2001; Currie et al., 2002; Harris and Wang,
2002; Newman et al., 2002; Bilek et al., 2003; DeShon and
Schwartz, 2004; Ranero et al., 2005; Schwartz and DeShon,
2007; Rychert et al., 2008; Syracuse et al., 2008). LET-
derived velocity models aimed at characterizing lateral and
downdip variability along the seismogenic zone have been
limited to individual experiments (Fig. 1a). Five amphibious
datasets were collected along the margin between 1999 and
2006, and each experiment used different sensors, database
archive methods, automatic and manual onset identification
techniques, and inconsistent quality determination. The ulti-
mate goal is to combine available datasets for higher resolu-
tion studies that maintain consistency along strike.

Costa Rica Seismogenic Zone Experiment

The Costa Rica Seismogenic Zone Experiment (CRSE-
IZE) included a two-stage amphibious deployment that began
in September 1999, jointly overseen by the University of
California-Santa Cruz, the Observatorio Vulcanolégico y
Sismolégico de Costa Rica (OVSICORI), and Scripps Insti-
tution of Oceanography (SIO) (Newman et al., 2002; DeShon
et al., 2003, 2006; DeShon and Schwartz, 2004; Schwartz
and DeShon, 2007). The passive seismic component com-
bined three-component broadband and short-period seismic
land arrays with three-component broadband ocean-bottom
seismometers (OBS) (Fig. 1a; () Table S1, available in the
electronic supplement); and recorded local, regional, and
teleseismic events near the Osa and Nicoya peninsulas
(Fig. 1b). The Osa deployment began mid-September 1999
and recorded two months of aftershocks from the 1999
M, 6.9 Quepos earthquake on 6 land seismometers and
14 OBS. In December 1999, these stations were redeployed
on and near the Nicoya Peninsula and supplemented with 14
additional land seismometers.

All CRSEIZE land data were continuously recorded at
40 Hz and later processed into Standard for the Exchange
of Earthquake Data (SEED) format. Waveform data are
available through the Incorporated Research Institutions
for Seismology (IRIS) Data Management Center (DMC).
The OBS data were sampled at 64 or 128 Hz. SIO processed
these data into Seismic Analysis Code (SAC) format after
applying timing corrections, identifying seafloor orientation
using magnetic locking compasses (Sauter and Dorman,
1995), and calculating instrument response (see DeShon,
2004). Antelope software (see Data and Resources for de-
tails) was used to organize seismic waveforms, detect events
(automatically and manually), generate initial locations, and
compute local magnitudes (M} ). Phase onsets were detected
using a short-term versus long-term average (STA/LTA)
method implemented in the “dbdetect” function of the Ante-
lope software. Phase associations and initial event locations
were calculated using “dbgrassoc” (Antelope) through the
global IASP91 velocity model (Kennett and Engdahl, 1991).
Analysts then reviewed the automatic P- and S-arrival picks,
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Table 1
Initial Numbers of Events Detected for Each Original
Dataset, the Numbers of P and S Arrivals for Each
Dataset, and the Totals for the Integrated Dataset

Number of Number of P Number of §
Experiment Events Arrivals Arrivals
OSA 1479 10,834 9942
NICOYA 10,353 152,277 77,833
QUE 2158 18,501 4228
NICAT 1277 9408 7167
JAC 2693 31,076 7731
Integrated 17,960 222,096 106,901

added thousands of additional P and S arrivals, and manually
identified smaller events missed using automated techniques
(DeShon, 2004; Ghosh et al., 2008). Earthquakes are shown
in Figure 1b and details of the dataset are in Table 1.

SFB574 QUE, JAC, and NICAT Experiments

The German SFB 574 project, operated by Christian
Albrechts University of Kiel and former Leibniz Institute of
Marine Sciences at the University of Kiel IFM-GEOMAR),
funded three amphibious experiments to study volatiles and
fluid exchange along the erosional Nicaragua/Costa Rica mar-
gin. The experiments consisted of offshore OBS and ocean-
bottom hydrophones (OBH) and temporary short-period land
stations (Fig. 1a). The Jaco, Costa Rica (JAC) array recorded
during 2002 (Arroyo et al., 2009) and was then moved south
in 2003 to become the Quepos, Costa Rica (QUE) array (Dinc
etal.,2010). Each array consisted of 23 offshore stations (~10
three-component OBS and ~13 single-component OBH) and
15 three-component short-period land stations. The Nicara-
gua amphibious array (NICAT) was deployed in December
2005 through June 2006 and consisted of 20 three-component
OBS and 30 land stations (Dinc et al., 2011). During the
NICAT and QUE experiments no more than 4-5 OBS were
functioning. Only the hydrophone component worked during
the JAC experiment. The JAC and NICAT arrays recorded at a
sampling frequency of 100 Hz, and the QUE array recorded at
50 Hz. (&) Station information for the SFB arrays is given in
Table S1 (available in the electronic supplement).

SFB574 seismic data were archived using SEISAN
(Havskov and Ottemoller, 2005). An STA/LTA trigger was
used to identify phase onsets. Locations were calculated us-
ing the program HYP (Lienert and Havskov, 1995). Initial
earthquake locations are shown in Figure 1b and arrival in-
formation in Table 1.

Reference Events

We selected a set of 20 reference events from each of the
five experiments to represent a cross section of earthquake
and station distribution. The reference events were used to
choose appropriate parameters for the wavelet—AIC auto-
matic picker and waveform cross correlation. These events
were selected to span the spatial, temporal, and magnitude
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range; station coverage was also considered. Locations for
the seismicity recorded during the experiments and the refer-
ence events are shown in Figure 1b. Reference event wave-
forms were visually inspected to grade initial overall quality
and noise level and then again to verify the performance of
the cross correlator and automatic picker.

Quality Determination

Method

Each of the five experiments in our study implemented a
quality scheme to rate the confidence of each picked arrival.
For example, originally JAC’s phase picks were weighted
from O to 4, with O denoting the most confident pick with
an uncertainty of +0.05 s and 4 for the most uncertain picks
(>0.2 s; Arroyo et al, 2009). Data from the QUE and
NICAT experiments were evaluated in a similar manner.
However, quality for the CRSEIZE phase onsets was defined
less consistently, and at times not at all, in part because Ante-
lope by default does not provide a simple method to define
quality using the standard 0—4 criteria. Herein lies the prob-
lem of the quality control obstacles of large seismic datasets.
Tens of analysts were involved in processing the five datasets
and handpicking P and S onsets. Certainty of a pick is highly
subjective. As a result, there has been no standardized pro-
cedure for quantifying pick quality that can be used to prop-
erly weight data for inverse approaches. Thus we decided
that integrating the five datasets required evaluation of
the quality of each arrival pick using an automated and stand-
ardized measures.

Recent developments in wavelet-transform methods
(Anant and Dowla, 1997; Zhang et al., 2003) and polariza-
tion (Vidale, 1986; Reading et al., 2001) have been used for
phase detection, with the most popular method for seismo-
logic studies being the autoregressive (AR) model (Yokota
et al., 1981; Maeda, 1985; Takanami and Kitagawa, 1988;
Leonard and Kennett, 1999; Sleeman and van Eck, 1999;
Leonard, 2000). AR techniques are based on the understand-
ing that a seismogram can be divided into segments that are
locally stationary before and after the phase onsets, with the
dividing point between the two distinct AR processes as-
sumed to be the phase arrival (Sleeman and van Eck, 1999).
Following Kitagawa and Akaike (1978), an adapted auto-
matic picker based on the AIC can be used to evaluate how
well the trial and error AR process fits. As the dividing point
of the two stationary segments move, the location of the min-
imum AIC value is assumed to be the best location and thus
the phase onset time (Akaike, 1973).

We use a wavelet—AIC automatic picker as implemented
by Zhang et al. (2003) to ensure standardized quality mea-
surements across all available datasets. A similar technique
was developed by Diehl et al. (2009). The picker method
of Diehl et al. (2009), however, uses a method by Maeda
(1985) that calculates the AIC coefficients without the AR
processes. Autoregressive AIC pickers are optimal if they
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are applied to the part of the signal that contains the onset
in order to guarantee that the global minimum of the AIC func-
tion represents the P or S phases (Zhang et al., 2003). Because
the AIC performs best when started around the onset, a wavelet
transform application is initially used on the waveforms to de-
tect potential phase onsets and to establish a window around
the arrival for which the AIC picker will use to give a final
arrival time (i.e., Takanami and Kitagawa, 1991; Leonard and
Kennett, 1999; Sleeman and van Eck, 1999). Unlike the
Fourier transform, the wavelet transform can represent the
seismogram locally both in time and frequency domains with
detail that matches the scale used. This transform calculates
the time-dependent contributions to the waveform in terms of
scale, making it nonredundant, unlike the spectrogram
method that calculates the amplitudes of particular frequen-
cies at particular times. The coarse features can be seen on
large scale and fine features on small scales. The scale factor
regulates the expansion or compression of the wavelet. Major
features of the signal will remain visible over many scales,
whereas characteristics such as noise will disappear at larger
scales. Figure 2 shows examples of wavelet transforms for P
and S waves in the dataset. The rapidly increasing wavelet co-
efficients mark the area of the phase onset. For our evaluation
of arrival pick quality, we do not use the wavelet transform to
pick the arrivals. Rather, we use it to provide a window around
a suspected arrival for the AIC picker to evaluate. The onset of
the arrival is the point at which the AIC has a minimum value
(Fig. 2). Using this method there is no need to filter the data
prior to the pick analysis. Additionally we do not use the au-
tomatic picks in further studies; we simply use the automatic
picks to compare with the original picks as described below.

Onsets identified using the wavelet—AIC method are com-
pared with the original picked arrival. The automatic pick is
used to quantify the quality of the original pick. For example,
if the automatic pick is within +0.05 s from the original
picked time, the original pick is given a quality of O (most
confident pick). We assign pick quality on a 0-5 scale whose
values are shown in Table 2, with quality O being the best
picks, 4 being poor quality/confidence picks, and 5 denoting
when the wavelet—AIC picker failed to detect a consistent pick
across the different wavelet scales. Figure 3 shows examples
of waveforms from the OSA experiment along with the origi-
nally picked onsets and wavelet—AIC picked onsets. () Exam-
ples from the other five experiments are documented in
Figure S1 (available in the electronic supplement). The auto-
mated pick is used solely to assign a quality to the original
pick. Because the majority of the phase picks were selected
by a person or at least visually inspected, we choose to use the
original pick if it is deemed high quality by the wavelet—AIC
picker. We assume that an experienced analyst will produce
higher quality picks than the automated method.

Results

A summary of the phase quality as determined by the
wavelet—AIC picker scheme is given in Figure 4. Quality is
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Figure 2. Waveform and absolute wavelet coefficients for three scales (left column) and their corresponding AIC values (right column).
Analyst picks are shown by the vertical solid black line on the waveform. Wavelet—AIC picks are shown as the dashed line. (a) P arrival for
land station BIJ of the JAC array. The rapidly increasing coefficients mark the area of the wave onset, and this time window will be used to
guide the AIC picker. The automatic pick differed from the handpick by 0.12 s. (b) S arrival for OBS station SS18 of the OSA array. The

automatic pick differed from the handpick by 0.079 s.

broken down by experiment and further by reference events
and land versus OBS stations. The first column under each
experiment shows the P- and S-pick quality for the complete
dataset. Figure 4f shows the quality of the entire integrated
dataset. Approximately 31% of all the P-arrival picks qualify
as extremely confident/high-quality picks (quality 0-1).
Another 21% qualifies as good quality (quality 2-3).
Results of the S quality assessment yield 26% having excel-
lent quality (0—1) and an additional 27% with good quality
(2-3). We would not recommend that quality 4 picks (19%
for P and 27% for S) be used in further research. Quality 5
represents the data with which the automatic picker failed to

detect a consistent arrival onset at the different wavelet scales
and thus would also be undesirable data for further use.
We find lower quality for the S arrivals, which likely
reflects the inability of the automatic pickers (and humans)
to locate S arrivals in P coda and/or the increased complexity
of the S waveforms. Figure 5 shows two examples of typical
S picker failure. Figure 5a shows a waveform with a small
precursor phase arriving before the actual S phase. The picker
does not work well in this scenario. The picker requires that at
least three of the four AIC pick locations at the different wave-
let scales (raw waveform, scale 1, scale 2, and scale 3; see 2)
fall relatively close together (<0.5 s) to be considered a



Integration of Arrival-Time Datasets for Consistent Quality Control: A Case Study of Amphibious Experiments

Table 2

Quality Determinations Assigned to Manual Catalog
Picks and tomoDD Weighting

Quality Ar* (s) tomoDD Weight
0 0-0.05 1
1 0.051-0.1 0.75
2 0.11-0.3 0.5
3 0.31-0.5 0.25
4 >0.5 Not used
5 Picker fails Not used

*Absolute value of differential times (Ar) in seconds between
the original picked arrival and the wavelet—AIC pick.

confident phase pick. The precursory phase creates its own
local AIC minimum therefore complicating the determination
of the local minimum that corresponds to the actual S phase.
The example in Figure 5b fails due to the emergent nature of
the S arrival. Again, the picks at different scales are not con-
sistent enough to determine a phase arrival. In both cases, the
human pick (solid vertical line on the raw waveforms) cannot
be given a very high confidence level due to the complex
nature of the waveforms.

With such a large dataset, we suggest that removing the
possibly bad P- and S-wave data as opposed to leaving data
of unquantified quality will strengthen the integrated dataset
described above. This hypothesis is tested further below. The
reference events show a similar trend to the complete dataset.
In all experiments, the land stations exhibit slightly higher
quality than the OBS stations which is expected because
ocean stations have greater noise sources.

We visually inspect every waveform in the reference
events for all five experiments to ensure that the automatic
picker was assigning a reasonable quality factor. For the OSA
array, 9 P arrivals (out of 230 picks) and 19 S arrivals (out of
231 picks) were either incorrectly given a poor quality assess-
ment (quality 4) or the picker failed to detect an arrival (quality
5) when visual inspection showed an obvious, clean phase
arrival with an accurate analyst pick. The NICOYA reference
dataset contained 26 (of 247) P arrivals and 35 (of 166) S arriv-
als that were good analyst picks but were given poor ratings.
Analyzing the SFB experiments, QUE lost 8 P picks (out of
298) and 12 S picks (out of 85) due to automatic picker error.
JAC had 30 good P arrivals (230 total) and 29 good S arrivals
(104 total) that were given qualities 4 or 5. In the NICAT
database, 28 of 194 P picks and 26 of 135 S picks were lost
to pick inaccuracy. Inspection revealed no obviously bad
picks that were given good quality ratings. Additionally,
(® Table S2 (available in the electronic supplement) shows
typical examples of how the new qualities compare to the
original qualities.

Waveform Cross Correlation

Double-difference LET techniques reduce noise in
resulting velocity images by inclusion of differential time
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OSA 26 Sept 1999
8.45° N 84.46° W, Depth 31 km, Magnitude 2.61

q PO QPSR Z q SO0 QPSR N
0.02s
0 2 4 6 8 0 2 4 6 8
q0S SS03 N
0.04 s
2 4 6 8

Time (s)

Time (s)

Figure 3. Example of waveforms from the OSA experiment
with the handpicked arrivals (solid vertical lines) and the automatic
picks from the wavelet—AIC automatic picker (dashed lines). Arrival
phase (P/S) and quality (g) are indicated on the waveforms. Differ-
ential time between the analyst and automatic picks are shown be-
low the quality in seconds. Station name and component are listed
for each waveform. () Examples for the other four arrays are shown
in Figure S1.

data. Differential times, the time difference between phases
reported at common stations for pairs of earthquakes, can
be calculated directly from catalog data or via CC (Waldhauser
and Ellsworth, 2000; Zhang and Thurber, 2003). We will test
the effect of improved quality control using double-difference
techniques. We use the bispectrum cross correlation for
seismic events package (BCSEIS; Du et al., 2004), which
correlates waveforms in the spectral domain and directly com-
putes differential times. CC is first performed between the
Fourier transforms of the waveform data, which is also known
as correlation in the second-order spectral domain. BCSEIS
also calculates the bispectrum CC (BCC), equivalent to corre-
lation in the third-order spectral domain, because this corre-
lation is less sensitive to correlated noise such as wind or
waves. The BCC is used to verify (accept or reject) the results
from the standard frequency CC. Subsample precision is ob-
tained through application of a coherence-weighted linear
fitting of the cross-spectrum phase, a technique of Poupinet
et al. (1984). Differential times (dt) are computed for event
pairs of highly similar waveforms at one or more stations.
CC studies frequently use the correlation coefficient
thresholds (i.e., 0.80) to accept or reject arrivals or differen-
tial times at a specific station or event pair. Such thresholds
may, if too high, discard many accurate times, and if too low,
contaminate the dataset with unreliable information. These
problems are most often an issue when high noise levels
are present, resulting in low CC coefficients. These low co-
efficients are interpreted as seemingly dissimilar waveforms.
BCSEIS takes waveform similarity at all stations for a given
event pair into account and uses a tiered set of thresholds to
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are included in the pie chart. The total number of picks represented in each chart is indicated at the lower left of the chart. Reference events
were chosen to be representative prior to any calculations, and their quality closely mimics that of the overall datasets for each array. Land
stations yield slightly higher-quality onsets than OBS stations. (f) The quality of the integrated dataset.

reject or accept differential times for inclusion in a final data-
set. For the Nicaragua and Costa Rica data, the initial CC is
performed on band-pass filtered waveforms (1-10 Hz, 2
poles, 2 passes) while the BCC is calculated on both the raw
and the filtered data. The original picks were always made on
unfiltered data. The initial CC derived time delay is translated
to a differential time if the initial CC and both BCC delays are
within two samples of one another, a user-defined choice. All
differential times associated with CC coefficients >0.65 are
kept, similar to a traditional threshold approach. If an event
pair has a CC coefficient >0.80 at any recording station, then

data at other stations with coefficients >0.50 are also in-
cluded in the final dt dataset. Examples are shown in Figure 6.
These thresholds were set after careful review of the refer-
ence dataset.

® Figure S2 (available in the electronic supplement)
summarizes the CC results using a multithreshold approach
with bispectrum verification for each of the five experiments,
as well as results assuming a traditional single threshold of
0.80 and 0.65. For the integrated dataset, CC resulted in
22,261 similar event pairs, 47,326 P dts, and 24,980 S dts.
This is ~2 times more event pairs than traditional single
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Figure 5. Examples of the wavelet-AIC method to identify an arrival. (a) Waveform and absolute wavelet coefficients for three scales
(left column) and their corresponding AIC values (right column) for OBS station SS16 of the OSA array. The handpick is shown by the vertical
solid black line on the waveform. Automatic arrival location of the S wave on these waveforms fails due to a precursory phase resulting in
multiple AIC minimums. (b) Coefficients and AIC values for land station MATA of the OSA array. Automatic pick fails due to emergent S

arrival.

threshold (0.80) cross correlation would yield and an ~2 and
~3-fold increase for P and S dts, respectively.

Discussion

We quantify the reliability of the automatic picker to
assign accurate quality factors and explore how the use of the
new qualities as mapped to weight would affect our sub-
sequent data processing, for example earthquake relocation
and velocity tomography. We have integrated five large
amphibious P- and S-wave arrival datasets into one exception-
ally high-quality set of absolute and differential time data us-

ing a combination of quality verification and CC techniques.
Some loss of good arrival times occurs due to the failure of the
automatic picker to correctly identify emergent or complex
onsets, especially for S waves. The loss is acceptable, how-
ever, in order to gain a consistent quality factor for every
arrival. On the other hand, loss in data will affect the data
coverage, for example, in tomographic inversions. This is dis-
cussed below.

Dataset Bias

We looked for trends and systematic biases in the
differences between the original picks and automatic picks.
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(a) osA

Event 1: 8/31/00, 9.06 N 84.15 W, Depth 36.29 km, M 1.33

Event 2: 10/21/99, 9.08 N 84.17 W, Depth 33.21 km, M 1.45
L L L L L
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(b) NICOYA
Event 1: 01/10/00, 9.65 N 85.91 W, Depth 30.37 km, M 1.58

Event 2: 01/04/00, 9.67 N 85.92 W, Depth 30.85 km, M 2.66

NBO1
CC:0.92
; : i
Time (s)
(c) NICAT (d) JAC/QUE

Event 1: 03/02/06, 10.37 N 86.20 W, Depth 17.1 km, M 2.0
Event 2: 03/04/06, 10.38 N 86.20 W, Depth 13.5 km, M 1.0

Event 1: 05/25/2002, 9.36 N 84.66 W, Depth 15.7 km
Event 2: 05/25/2002, 9.36 N 84.66 W, Depth 17.4 km
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Figure 6. Example of realignment resulting from waveform cross correlation for four arrays. For each, event 1 is shown in black and

event 2 in gray. The waveforms are aligned on the adjusted P after bispectrum CC. The P for event 2 is left at the original manual pick (dashed
line). The cross-correlation-derived P pick for event 2 is shown by the solid line. Event information and time domain CC coefficients are listed
for each waveform. Note that the BCSEIS package allows for direct computation of differential times rather than absolute pick adjustments,
and the absolute adjustment shown here is only for illustrative purposes.

Table 3 shows statistical measurements of the distribution of
these differences for each of the experiments. Scatter plots
and histograms revealed a slight bias toward negative values,
indicating that the wavelet—AIC tends to pick late relative to
the analyst. There was no evidence of multimodal distribu-
tions. Of the five experiments, NICOYA and NICAT lose the
largest absolute number of arrivals due to quality 4 and 5
ratings (Fig. 4b,d). The NICOYA and NICAT experiments
have the highest standard deviations associated with original
pick versus automatic pick time differences (Table 3). NIC-
OYA, however, is also the largest dataset because stations
were deployed for a significantly longer time period than the
other experiments and had the most analysts with the broad-
est range of experience picking phase arrivals. Therefore, it is
not surprising that the pick quality of NICOYA dataset is
most variable. NICAT’s poor quality is due to the overall
noisier waveforms compared to the other experiments. The
poor quality rating of the NICOYA and NICAT datasets
significantly diminish the apparent quality of the integrated
dataset (Fig. 4f). Excluding the NICOYA and NICAT data-
sets would increase the percentage of high-quality picks
(quality 0-3) to 68% of the P-wave data and 69% of the
S-wave data.

Although NICOYA and NICAT show the largest
differences between original and automatic picks, overall the
means and medians are low for all experiments, with most in

the range of being high-quality data (<0.05 s). There is a
large difference between standard deviations reported for
all data versus only the high-quality (0-3) data. This is
expected because standard deviations around means are sen-
sitive to large outliers. The deviation from the median is
quantified using the median absolute deviation (MAD).
MAD is calculated by first finding the median of the data re-
siduals and then taking the median of the absolute deviations
about that data residual median. MAD is less sensitive to
large outliers and better quantifies the statistical dispersion
of all data (Table 3). The MAD values for the complete data-
set and the high-quality data are similar and low, again sug-
gesting that the larger standard deviations for all the data
versus the high-quality subset is caused by outliers which
are removed through our quality control scheme.

Effect on Earthquake Location

To quantify what effect the new quality determinations
and removal of poor phase picks would have on earthquake
location, we relocated all earthquakes using the original data
qualities (i.e., all phases given quality 0) and the new data
qualities. We calculate locations using VELEST (Kissling
et al., 1994) and a 1D model created from previously
published minimum 1D models for this region (Quintero and
Kissling, 2001; DeShon et al., 2003, 2006; DeShon and
Schwartz, 2004; and (E) Table S3, available in the electronic
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Table 3
Data Statistics At (Original Pick Minus the Automatic Pick) in Seconds

Experiment/Phase/Data Mean Median Standard Deviation ~ Median Absolute Deviation
OSA*/Pf/all® 0.024 -0.01 1.634 0.106
OSA/S/all 0.347  -0.04 1.856 0.2

0SA/P/0-3 -0.027  —-0.004 0.152 0.054
OSA/S/0-3 -0.068 —0.04 0.184 0.095
NICOYA/P/all -0.569  —0.025 3.242 0.142
NICOYA/S/all -0.22 -0.24 1.52 0.317
NICOYA/P/0-3 —0.026 0 0.177 0.075
NICOYA/S/0-3 -0.101  -0.07 0.206 0.134
QUE/P/all -0.287 —0.018 1.229 0.039
QUE/S/all -0.229 -0.214 1.343 0.215
QUE/P/0-3 -0.053 —0.01 0.133 0.02
QUE/S/0-3 -0.133  —-0.086 0.174 0.081
NICAT/P/all -0.71 —0.194 2.372 0.267
NICAT/S/all -0.317 —0.335 1.587 0.339
NICAT/P/0-3 -0.109  —0.046 0.174 0.054
NICAT/S/0-3 -0.154  —0.135 0.206 0.124
JAC/P/all -0.167  —0.057 1.244 0.093
JAC/S/all -0.255 —-0.295 1.462 0.278
JAC/P/0-3 -0.096 —0.035 0.154 0.041
JAC/S/0-3 -0.176  —0.16 0.177 0.127

*Experiment name.
Seismic phase.
Data included in statistics.

SAll, entire data catalog in statistics (all qualities).

0-3: only qualities 0-3 in statistics.

supplement). Our new qualities range from 0—4 and are used
directly in VELEST to describe the relative weighting of the
phases. However, phases of quality 4 are down-weighted to O
in the inversion process. The numbers of arrivals for P and §
are given in Table 4. Note that in relocations using either the
original or new qualities result in hypocentral location
changes from the original catalog solutions due to differences
in velocity models from the original processing and the use of
a different relocation technique. This relocation method does
not use differential times or cross-correlation information.

We compared both sets of relocations to the original cata-
log locations and to each other. The mean, median, and stan-
dard deviation of changes in latitude, longitude, depth, and
origin time were calculated for each of the five experiments
(B Table S4, available in the electronic supplement). Changes
in hypocentral distance, number of P and S waves, and root
mean square (rms) for each array are shown in Table 4.

For all arrays, analysis of the new hypocenters show that
the subset data with the new qualities (newq) and the data
with the original qualities (oldq) produce statistically similar
movements in their relocations results (Tables 4, € S4,
available in the electronic supplement). The median distance
difference between the relocated hypocenters produced by
the originally weighted data and the newly assigned data
quality ranges between 1.8 and 4.6 km, while the shift of
the oldq and newq relocations relative to the original catalog
locations are similar in magnitude. The overall rms values
using the oldq and newq catalogs are also very similar for
each experiment. The removal of a substantial amount of

data did not significantly affect the relocations in a statistical
sense, in part because large residuals are down-weighted dur-
ing the inversion process. Even with very different initial
weighting schemes, the final set of arrivals used to relocate
the oldq and newq catalogs were statistically the same. These
results do suggest, however, that location uncertainty for the
1D relocations is on the order of a few kilometers for all of
the experiments.

Effect on Seismic Velocity Modeling

Precise P- and S-arrival times are required for the inver-
sion of travel-time data to derive seismic velocity. Because of
the nonuniqueness of inversion solutions, the quality of the
initial input data is especially important. The inversion of
poor quality data can still result in minimized final residuals
and a model that may have low rms and reasonable variance,
yet not realistically describe the velocity structure. We test
the effect of including all data of unknown quality versus
limiting the dataset to only data we know is high quality into
a double-difference seismic velocity tomographic inversion
(tomoDD, Zhang, 2003; Zhang and Thurber, 2003).

The inversion of the high-quality subset of the CRSEIZE
and SFB data was performed first. Details of procedures for
this inversion are described in Moore-Driskell (2012). The
qualities from this study were translated into weights ranging
from O (poor) to 1 (best) for the P and S picks. These weights
(Table 2) were used in the tomography algorithm. A second
inversion was performed using the same event subset but
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Table 4
Data Statistics Comparing Calculations Using the Old Arrival Pick Qualities and the New Pick Qualities
Change in Hypocentral Change in Relocated
Distance Location Origin Time rms* Events
Mean Median Standard Mean Median Standard Standard
Experiment (km) (km) Deviation (km) (s) (s) Deviation (s) Mean Median Deviation Number
OSA oldq relocations vs. 13.2 11.2 9.4 1.8 1.6 1.2 0.9 0.7 0.6 943
original locations
OSA newq relocations vs. 134 11.3 10.0 1.9 1.7 1.3 0.9 0.7 0.7 943
original locations
OSA oldq vs. newq 4.5 35 3.8 0.1 0.1 04 0.0 0.0 0.3
relocations
NICOYA oldq relocations vs. 3.8 2.7 4.5 0.4 0.3 0.6 0.3 0.2 0.5 10,314
original locations
NICOYA newq relocations vs. 4.0 2.7 4.8 0.4 0.3 0.6 0.3 0.2 0.5 10,311
original locations
NICOYA oldq vs. newq 1.4 0.7 7.6 0.0 0.0 0.3 0.0 0.0 0.2
relocations
QUE oldq relocations vs. 9.6 5.8 14.0 0.9 0.5 1.9 0.4 0.3 0.6 2,014
original locations
QUE newq relocations vs. 8.6 49 14.6 0.3 0.1 0.6 0.4 0.3 0.6 2,019
original locations
QUE oldq vs. newq 5.8 35 11.3 0.3 0.2 1.2 0.0 0.0 0.4
relocations
JAC oldq relocations vs. 35 2.6 4.7 1.1 1.1 0.7 0.2 0.2 0.3 2,689
original locations
JAC newq relocations vs. 34 2.4 4.6 0.3 0.3 0.7 0.2 0.2 0.4 2,690
original locations
JAC oldq vs. newq relocations 24 1.8 2.7 14 L5 0.6 0.0 0.0 0.2
NICAT oldq relocations vs. 6.9 5.0 9.7 0.2 0.1 1.0 0.4 0.3 0.9 1,446
original locations
NICAT newq relocations vs. 6.8 4.9 9.2 0.2 0.1 0.9 0.4 0.3 0.8 1,442
original locations
NICAT oldq vs. newq 5.7 4.6 6.9 0.0 0.0 0.4 0.3 0.2 0.4

relocations

*rms values for the original locations are set to 0.0.

with the P and S weighting all set to 1. We will refer to this
second tomographic test as the equal-weights data for sim-
plicity of description. Catalog differential times were calcu-
lated so that the differential times also reflected the new
qualities. Both inversions used identical cross-correlation
data and weighting derived using BCSEIS.

rms, model variance, and data variance between the re-
sulting two models differ little, though weighted data has
slightly lower rms and model/data variance. These similar
statistics reflect the double-difference tomography algo-
rithm’s effectiveness at minimizing residuals even with a
poorer quality/unweighted dataset through the use of residual
weighting. In this case, a residual spread is calculated (a
robust equivalent to standard deviation; see Zhang, 2003).
A cutoff value is assigned to the spread, usually between
3 and 6. If the residuals approach the cutoff spread value, the
residual weighting drops to zero. This essentially removes
non-Gaussian outliers from being used in the inversion for
both the unweighted and the weighted inversion.

Typically for local earthquake DD tomographic inver-
sions, only events with at least eight recorded P-wave arrivals
are used. When eliminating the poor quality data, arrivals are

lost and as a result the number of events that can be used de-
creases, thus reducing the data coverage. For the CRSEIZE/
SFB dataset this was substantial with about 31% of the events
lost because of lack of enough P arrivals. Table 5 shows the
numbers of events for each experiment before and after the
quality adjustments. Because of this decrease in the amount
of data we elected to perform the inversion with the poorest
data, but down-weighting it to 0.1 in the inversion parameters.
Because all of the datasets have been previously used in other

Table 5
Number of Events before and after Weighting
Arrival Not Weighted Arrivals Weighted Events

Experiment (Number of Events) (Number of Events) Lost* (%)
OSA 328 219 33
NICOYA 1081 772 29
QUE 529 393 26
NICAT 697 315 55
JAC 602 545 9
Integrated 3237 2244 31

*Lost events are a result of poor-quality arrivals being removed from
the dataset and thus events are removed because they now have < 8 P
arrivals.
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Comparison of weighted data tomographic images versus unweighted data tomographic images. (a) Weighted quality data:

seismic velocity perturbations (%) from the 1D starting model of the inversion performed with the new weighting based on the quality
determination. (b) Unweighted data: the inversion using the data all weighted to 1. Contours are shown for +15%, +10%, and £5%.
(c) The difference in the absolute velocity of the weighted minus the unweighted model in km/s. The Figure 1 map shows the locations
of the cross sections. The cross-section name is indicated in the lower left corner of the plot. Unweighted model shows significant differences

in locations of perturbations and perturbation amplitudes.

studies and have been analyzed by people as opposed to solely
automatic picks, this approach is probably valid for this and
other seismic studies, but we feel the best dataset will exclude
poorest (quality 4) data. However, using the dataset with the
poorer, down-weighted data, we can directly compare the in-
versions using the weighted data and the unweighted, that is
using the same event list and arrivals for both. This approach
will eliminate the differences caused by a smaller event cata-
log and focus on the variance caused by the new weighting
scheme. For completeness, we also invert the data with the
poorest data removed as we would in a typical tomographic
inversion using this data-weighting procedure () Fig. S3,
available in the electronic supplement). For all cases, events

with a greatest P-wave azimuthal separation (GAP) of <180°,
and events that moved a great deal during relocation with the
VELEST program were also removed prior to inversion.
Even though the statistics differ little, differences in the
final output velocity models are quite large. Figure 7 shows
the resulting tomographic images for seismic velocity using
the high-quality weights (column A) and the equal-weights
data (column B). Inversion of the equal-weights data intro-
duces velocity perturbations in areas not resolved in the qual-
ity-weights inversion. For example, in all the cross sections
shown in Figure 7, the equal-weights inversion shows strong
velocity perturbations in the oceanic mantle. In areas of high-
est resolution, the major characteristics of the cross sections



2764

are similar, but the amplitudes of the perturbations in the
equal-weights data are much larger, in many places £10%
or more from the 1D minimum starting model. The differ-
ence in the quality-weighted and equal-weighted absolute
velocities in km/s can be locally large (Fig. 7, column C).
In many locations the two models differ as much as
+1.5 km/s. For context, if a velocity of 7.0 km/s is reduced
by 1.5 km/s in the equal-weights tomography, there is a
velocity reduction of 22% between models. This magnitude
of differences between models is unreasonable. With this
comparison it is obvious that the inversion is trying to correct
for the poorer quality by introducing unrealistic velocities
into the model. The equal-weights model contains noise due
to the identical initial weighting of high- and low-quality
data. However, there is no statistical indication (rms, etc.)
that would reveal this source of noise. In other words, it
would be possible to misinterpret the resulting noisy model.
Additionally, damping parameters in the inversion could also
affect the magnitude of the velocity anomalies in the models.
(® We show in Figure S4 (available in the electronic supple-
ment) that increasing the damping in the inversion does not
act to decrease the unrealistic anomalies seen in the equally
weighted inversion.

Conclusions

Many seismic studies rely on the accuracy of travel-time
datasets, and the phase quality verification method outlined
here can be easily applied to consistently quantify the quality
of pre-existing datasets in which waveforms are available.
The wavelet—AIC method allows quick and consistent veri-
fication of pre-existing phase onset quality, which is valuable
when many people have analyzed the data and inconsistent
quality factors result. We would have been unable to visually
assess the quality of every arrival pick in a timely fashion.
The new quality factors can be easily transformed into
weights for inclusion in studies that use such data. As other
studies have shown, the use of CC methods can also reduce
phase onset errors. The joint approach of using autodetectors
to verify pick quality of large datasets and CC methods to
improve absolute and/or differential times is a unique solu-
tion to the increasingly common problem of producing well-
described, high-quality arrival-time datasets from large
seismic experiments.

The quality-controlled set of P- and S-pick onsets and
waveform CC derived differential times for the Nicaragua/
Costa Rica amphibious networks are being used to develop
3D velocity and attenuation tomographic images of the
Middle America subduction zone. Though many phases
were lost or reweighted using quality determination, reloca-
tion within a 1D velocity model suggests that only minor
location changes result for well-recorded earthquakes. Com-
parison to tomographic images created using the quality-
weighted data versus equal-weighted data, however, shows
significant addition of unresolved velocity perturbations
and greatly increased perturbation amplitudes with the equal-

M. Moore-Driskell, H. R. DeShon, W. Rabbel, M. Thorwart, Y. Dzierma, and I. G. Arroyo

weighted data. This can have substantial effect on interpre-
tation of tomographic images. As larger experiments and
bigger datasets become widely available to the community,
efficient quality assessment techniques will become more
necessary.

Data and Resources

Seismograms used in this study were collected as part of
the CRSEIZE and SFB experiments. The land CRSEIZE seis-
mograms are available through the Incorporated Research
Institutions for Seismology IRIS Data Management Center
at www.iris.edu (last accessed August 2012). CRSEIZE OBS
data are available by request from LeRoy Dorman, Susan
Schwartz, or H. R. DeShon. CRSEIZE seismic instrumenta-
tion was provided by Scripps Institution of Oceanography-
University of California San Diego, University of California
Santa Cruz, and the IRIS Program for Array Seismic Studies
of the Continental Lithosphere (PASSCAL) Instrument
Center. SFB seismograms can be requested from W. Rabbel.
The Geophysical Instrument Pool Potsdam (GIPP) at Geo-
forschungszentrum Potsdam provided land seismometers
for the JAC, QUE, and Nicaragua amphibious array (NICAT)
arrays and Christian Albrechts University of Kiel and former
Leibniz Institute of Marine Sciences at the University of Kiel
(IFM-GEOMAR) provided the OBS stations. The Antelope
database is a product of Boulder Real Time Technologies
(www.brtt.com, last accessed April 2013).

Figure 1 was made using the Generic Mapping Tools
version 4.2.1 (Wessel and Smith, 1998). The wavelet—AIC
program was run using MATLAB version R2009b. Figures 2
and 3 were created in MATLAB version R2009b. SAC
(Goldstein et al., 2003) was used for data processing. Ante-
lope software, a product of Boulder Real Time Technologies,
and SEISAN (Havskov and Ottemoller, 2005) were used for
waveform management and initial locations.
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