426 research outputs found

    Sex Differences in Semantic Processing: Event-Related Brain Potentials Distinguish between Lower and Higher Order Semantic Analysis during Word Reading

    Get PDF
    Behavioral studies suggest that women and men differ in the strategic elaboration of verbally encoded information especially in the absence of external task demand. However, measuring such covert processing requires other than behavioral data. The present study used event-related potentials to compare sexes in lower and higher order semantic processing during the passive reading of semantically related and unrelated word pairs. Women and men showed the same early context effect in the P1-N1 transition period. This finding indicates that the initial lexical-semantic access is similar in men and women. In contrast, sexes differed in higher order semantic processing. Women showed an earlier and longer lasting context effect in the N400 accompanied by larger signal strength in temporal networks similarly recruited by men and women. The results suggest that women spontaneously conduct a deeper semantic analysis. This leads to faster processing of related words in the active neural networks as reflected in a shorter stability of the N400 map in women. Taken together, the findings demonstrate that there is a selective sex difference in the controlled semantic analysis during passive word reading that is not reflected in different functional organization but in the depth of processin

    Glioma infiltration of the corpus callosum: early signs detected by DTI

    Get PDF
    The most frequent primary brain tumors, anaplastic astrocytomas (AA) and glioblastomas (GBM): tend to invasion of the surrounding brain. Histopathological studies found malignant cells in macroscopically unsuspicious brain parenchyma remote from the primary tumor, even affecting the contralateral hemisphere. In early stages, diffuse interneural infiltration with changes of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) is suspected. The purpose of this study was to investigate the value of DTI as a possible instrument of depicting evidence of tumor invasion into the corpus callosum (CC). Preoperatively, 31 patients with high-grade brain tumors (8 AA and 23 GBM) were examined by MRI at 3 T, applying a high-resolution diffusion tensor imaging (DTI) sequence. ADC- and FA-values were analyzed in the tumor-associated area of the CC as identified by fiber tracking, and were compared to matched healthy controls. In (MR-)morphologically normal appearing CC the ADC values were elevated in the tumor patients (n = 22; 0.978 × 10(−3) mm²/s) compared to matched controls (0.917 × 10(−3) mm²/s, p < 0.05), and the corresponding relative FA was reduced (rFA: 88 %, p < 0.01). The effect was pronounced in case of affection of the CC visible on MRI (n = 9; 0.978 × 10(−3) mm²/s, p < 0.05; rFA: 72 %, p < 0.01). Changes in diffusivity and anisotropy in the CC can be interpreted as an indicator of tumor spread into the contralateral hemisphere not visible on conventional MRI

    Microbial fuel cells: a green and alternative source for bioenergy production

    Get PDF
    Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)

    Storytelling as 'unorthodox' agency:negotiating the 2012 family immigration rules (United Kingdom)

    Get PDF
    This article attends to the lived experience of binational families subject to the 2012 family immigration rules (FIR). It seeks to enrich the pre-existing discussions of family migration within the European Union (EU) and the United Kingdom, focusing on the ‘micro-political’ experiences of those whose lives have been adversely affected by their introduction. It draws on the life writings of binational families, suggesting that a micro-political focus reveals an ongoing neuropolitical experience that traditional accounts of moral agency are ill-equipped to negotiate. The article suggests an unorthodox interpretation of agency premised on storytelling, while probing the tensions that emerge when this lived experience is framed in such a manner. It concludes by positing a series of questions relating to the value of a neuropolitical labelling of the subject and suggests a need to further engage with traumatic interpretations of harm at the intersection of citizenship rights and mobility rights

    A comparison of acoustic and linguistics methodologies for Alzheimer’s dementia recognition

    Get PDF
    In the light of the current COVID-19 pandemic, the need for remote digital health assessment tools is greater than ever. This statement is especially pertinent for elderly and vulnerable populations. In this regard, the INTERSPEECH 2020 Alzheimer’s Dementia Recognition through Spontaneous Speech (ADReSS) Challenge offers competitors the opportunity to develop speech and language-based systems for the task of Alzheimer’s Dementia (AD) recognition. The challenge data consists of speech recordings and their transcripts, the work presented herein is an assessment of different contemporary approaches on these modalities. Specifically, we compared a hierarchical neural network with an attention mechanism trained on linguistic features with three acoustic-based systems: (i) Bag-of-Audio-Words (BoAW) quantising different low-level descriptors, (ii) a Siamese Network trained on log-Mel spectrograms, and (iii) a Convolutional Neural Network (CNN) end-to-end system trained on raw waveforms. Key results indicate the strength of the linguistic approach over the acoustics systems. Our strongest test-set result was achieved using a late fusion combination of BoAW, End-to-End CNN, and hierarchical-attention networks, which outperformed the challenge baseline in both the classification and regression tasks

    Long-term performance of a plant microbial fuel cell with Spartina anglica

    Get PDF
    The plant microbial fuel cell is a sustainable and renewable way of electricity production. The plant is integrated in the anode of the microbial fuel cell which consists of a bed of graphite granules. In the anode, organic compounds deposited by plant roots are oxidized by electrochemically active bacteria. In this research, salt marsh species Spartina anglica generated current for up to 119 days in a plant microbial fuel cell. Maximum power production was 100 mW m−2 geometric anode area, highest reported power output for a plant microbial fuel cell. Cathode overpotential was the main potential loss in the period of oxygen reduction due to slow oxygen reduction kinetics at the cathode. Ferricyanide reduction improved the kinetics at the cathode and increased current generation with a maximum of 254%. In the period of ferricyanide reduction, the main potential loss was transport loss. This research shows potential application of microbial fuel cell technology in salt marshes for bio-energy production with the plant microbial fuel cell

    Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor.</p> <p>Methods</p> <p>Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+), moderate (++), high (+++) or none (-) scores were given.</p> <p>Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting.</p> <p>Results</p> <p>Low grade (grades 1–2) brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4) tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples.</p> <p>Conclusion</p> <p>Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker.</p
    corecore