418 research outputs found

    Infinite-Dimensional Symmetries of Two-Dimensional Coset Models

    Get PDF
    It has long been appreciated that the toroidal reduction of any gravity or supergravity to two dimensions gives rise to a scalar coset theory exhibiting an infinite-dimensional global symmetry. This symmetry is an extension of the finite-dimensional symmetry G in three dimensions, after performing a further circle reduction. There has not been universal agreement as to exactly what the extended symmetry algebra is, with different arguments seemingly concluding either that it is G^\hat G, the affine Kac-Moody extension of G, or else a subalgebra thereof. Exceptional in the literature for its explicit and transparent exposition is the extremely lucid discussion by Schwarz, which we take as our starting point for studying the simpler situation of two-dimensional flat-space sigma models, which nonetheless capture all the essential details. We arrive at the conclusion that the full symmetry is described by the Kac-Moody algebra G, although truncations to subalgebras, such as the one obtained by Schwarz, can be considered too. We then consider the explicit example of the SL(2,R)/O(2) coset, and relate Schwarz's approach to an earlier discussion that goes back to the work of Geroch.Comment: Typos corrected, some reorganisation; 36 page

    Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters

    Get PDF
    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions

    Melvin universe as a limit of the C-metric

    Get PDF
    It is demonstrated that the Melvin universe representing the spacetime with a strong 'homogeneous' electric field can by obtained from the spacetime of two accelerated charged black holes by a suitable limiting procedure. The behavior of various invariantly defined geometrical quantities in this limit is also studied.Comment: 5 pages, no figures [v2: two references added

    Classical Symmetries of Some Two-Dimensional Models

    Get PDF
    It is well-known that principal chiral models and symmetric space models in two-dimensional Minkowski space have an infinite-dimensional algebra of hidden symmetries. Because of the relevance of symmetric space models to duality symmetries in string theory, the hidden symmetries of these models are explored in some detail. The string theory application requires including coupling to gravity, supersymmetrization, and quantum effects. However, as a first step, this paper only considers classical bosonic theories in flat space-time. Even though the algebra of hidden symmetries of principal chiral models is confirmed to include a Kac--Moody algebra (or a current algebra on a circle), it is argued that a better interpretation is provided by a doubled current algebra on a semi-circle (or line segment). Neither the circle nor the semi-circle bears any apparent relationship to the physical space. For symmetric space models the line segment viewpoint is shown to be essential, and special boundary conditions need to be imposed at the ends. The algebra of hidden symmetries also includes Virasoro-like generators. For both principal chiral models and symmetric space models, the hidden symmetry stress tensor is singular at the ends of the line segment.Comment: 51 pages, minor corrections and added reference

    The Ernst Equation on a Riemann Surface

    Full text link
    The Ernst equation is formulated on an arbitrary Riemann surface. Analytically, the problem reduces to finding solutions of the ordinary Ernst equation which are periodic along the symmetry axis. The family of (punctured) Riemann surfaces admitting a non-trivial Ernst field constitutes a ``partially discretized'' subspace of the usual moduli space. The method allows us to construct new exact solutions of Einstein's equations in vacuo with non-trivial topology, such that different ``universes'', each of which may have several black holes on its symmetry axis, are connected through necks bounded by cosmic strings. We show how the extra topological degrees of freedom may lead to an extension of the Geroch group and discuss possible applications to string theory.Comment: 22 page

    Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations

    Full text link
    For the fields depending on two of the four space-time coordinates only, the spaces of local solutions of various integrable reductions of Einstein's field equations are shown to be the subspaces of the spaces of local solutions of the ``null-curvature'' equations constricted by a requirement of a universal (i.e. solution independent) structures of the canonical Jordan forms of the unknown matrix variables. These spaces of solutions of the ``null-curvature'' equations can be parametrized by a finite sets of free functional parameters -- arbitrary holomorphic (in some local domains) functions of the spectral parameter which can be interpreted as the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. Direct and inverse problems of such mapping (``monodromy transform''), i.e. the problem of finding of the monodromy data for any local solution of the ``null-curvature'' equations with given canonical forms, as well as the existence and uniqueness of such solution for arbitrarily chosen monodromy data are shown to be solvable unambiguously. The linear singular integral equations solving the inverse problems and the explicit forms of the monodromy data corresponding to the spaces of solutions of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction

    The Effect of Planarization on Width

    Full text link
    We study the effects of planarization (the construction of a planar diagram DD from a non-planar graph GG by replacing each crossing by a new vertex) on graph width parameters. We show that for treewidth, pathwidth, branchwidth, clique-width, and tree-depth there exists a family of nn-vertex graphs with bounded parameter value, all of whose planarizations have parameter value Ω(n)\Omega(n). However, for bandwidth, cutwidth, and carving width, every graph with bounded parameter value has a planarization of linear size whose parameter value remains bounded. The same is true for the treewidth, pathwidth, and branchwidth of graphs of bounded degree.Comment: 15 pages, 6 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Pair creation of black holes joined by cosmic strings

    Get PDF
    We argue that production of charged black hole pairs joined by a cosmic string in the presence of a magnetic field can be analyzed using the Ernst metric. The effect of the cosmic string is to pull the black holes towards each other, opposing to the background field. An estimation of the production rate using the Euclidean action shows that the process is suppressed as compared to the formation of black holes without strings.Comment: 7 pages, LaTeX. Minor typos corrected

    Hawking Radiation of Dirac Particles in a Variable-mass Kerr Space-time

    Get PDF
    Hawking effect of Dirac particles in a variable-mass Kerr space-time is investigated by using a method called as the generalized tortoise coordinate transformation. The location and the temperature of the event horizon of the non-stationary Kerr black hole are derived. It is shown that the temperature and the shape of the event horizon depend not only on the time but also on the angle. However, the Fermi-Dirac spectrum displays a residual term which is absent from that of Bose-Einstein distribution.Comment: 12 pages in 12pt Revtex, no figure, to appear in Gen. Rel. Grav. Vol.33, No.7 (2001

    U-Duality and Symplectic Formulation of Dilaton-Axion Gravity

    Full text link
    We study a bosonic four--dimensional effective action corresponding to the heterotic string compactified on a 6--torus (dilaton--axion gravity with one vector field) on a curved space--time manifold possessing a time--like Killing vector field. Previously an existence of the SO(2,3)Sp(4,R)SO(2,3)\sim Sp(4, R) global symmetry (UU--duality) as well as the symmetric space property of the corresponding σ\sigma--model have been established following Neugebauer and Kramer approach. Here we present an explicit form of the Sp(4,R)Sp(4, R) generators in terms of coset variables and construct a representation of the coset in terms of the physical target space coordinates. Complex symmetric 2×22\times 2 matrix ZZ (``matrix dilaton --axion'') is introduced for which UU--duality takes the matrix valued SL(2,R)SL(2, R) form. In terms of this matrix the theory is further presented as a K\"ahler σ\sigma--model. This leads to a more concise 2×22\times 2 formulation which opens new ways to construct exact classical solutions. New solution (corresponding to constant ImZ{\rm Im} Z ) is obtained which describes the system of point massless magnetic monopoles endowed with axion charges equal to minus monopole charges. In such a system mutual magnetic repulsion is exactly balanced by axion attraction so that the resulting space time is locally flat but possesses multiple Taub--NUT singularities.Comment: LATEX, 20 pages, no figure
    corecore