For the fields depending on two of the four space-time coordinates only, the
spaces of local solutions of various integrable reductions of Einstein's field
equations are shown to be the subspaces of the spaces of local solutions of the
``null-curvature'' equations constricted by a requirement of a universal (i.e.
solution independent) structures of the canonical Jordan forms of the unknown
matrix variables. These spaces of solutions of the ``null-curvature'' equations
can be parametrized by a finite sets of free functional parameters -- arbitrary
holomorphic (in some local domains) functions of the spectral parameter which
can be interpreted as the monodromy data on the spectral plane of the
fundamental solutions of associated linear systems. Direct and inverse problems
of such mapping (``monodromy transform''), i.e. the problem of finding of the
monodromy data for any local solution of the ``null-curvature'' equations with
given canonical forms, as well as the existence and uniqueness of such solution
for arbitrarily chosen monodromy data are shown to be solvable unambiguously.
The linear singular integral equations solving the inverse problems and the
explicit forms of the monodromy data corresponding to the spaces of solutions
of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction