11,213 research outputs found

    Transmission efficiency and noise, vibration and harshness refinement of differential hypoid gear pairs

    Get PDF
    This article presents a combined multi-body dynamics and lubricated contact mechanics model of vehicular differential hypoid gear pairs, demonstrating the transient nature of transmission efficiency and noise, vibration and harshness performance under various driving conditions. The contact of differential hypoid gears is subjected to mixed thermo-elastohydrodynamic regime of lubrication. The coefficient of friction is obtained using an analytical approach for non-Newtonian lubricant shear and supplemented by boundary interactions for thin films. Additionally, road data and aerodynamic effects are used in the form of resisting torque applied to the output side of the gear pair. Sinusoidal engine torque variation is also included to represent engine order torsional input resident on the pinion gear. Analysis results are presented for New European Driving Cycle transience from low-speed city driving condition in second gear to steady-state cruising in fourth gear for a light truck. It is shown that the New European Driving Cycle captures the transmission efficiency characteristics of the differential hypoid gear pair under worst case scenario, with its underlying implications for fuel efficiency and emissions. However, it fails to address the other key attribute, being the noise, vibration and harshness performance. In the case of hypoid gears, the resultant noise, vibration and harshness characteristics can be particularly annoying. It is concluded that broader transient manoeuvres encompassing New European Driving Cycle are required for assessment, in order to obtain a balanced approach for transmission efficiency and noise, vibration and harshness performance. This approach is undertaken in this article, which is not hitherto reported in the literature

    Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells

    Get PDF
    The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.111311Ysciescopu

    Nuclear matter to strange matter transition in holographic QCD

    Full text link
    We construct a simple holographic QCD model to study nuclear matter to strange matter transition. The interaction of dense medium and hadrons is taken care of by imposing the force balancing condition for stable D4/D6/D6 configuration. By considering the intermediate and light flavor branes interacting with baryon vertex homogeneously distributed along R^3 space and requesting the energy minimization, we find that there is a well defined transition density as a function of current quark mass. We also find that as density goes up very high, intermediate (or heavy) and light quarks populate equally as expected from the Pauli principle. In this sense, the effect of the Pauli principle is realized as dynamics of D-branes.Comment: 13 pages, 14 figure

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    The sign problem across the QCD phase transition

    Full text link
    The average phase factor of the QCD fermion determinant signals the strength of the QCD sign problem. We compute the average phase factor as a function of temperature and baryon chemical potential using a two-flavor NJL model. This allows us to study the strength of the sign problem at and above the chiral transition. It is discussed how the UA(1)U_A(1) anomaly affects the sign problem. Finally, we study the interplay between the sign problem and the endpoint of the chiral transition.Comment: 9 pages and 9 fig

    Direct observation of spin-polarised bulk bands in an inversion-symmetric semiconductor

    Get PDF
    Methods to generate spin-polarised electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices. This is generally accepted to require breaking global structural inversion symmetry. In contrast, here we present direct evidence from spin- and angle-resolved photoemission spectroscopy for a strong spin polarisation of bulk states in the centrosymmetric transition-metal dichalcogenide WSe2_2. We show how this arises due to a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localised, leading to enormous spin splittings up to  ⁣0.5\sim\!0.5 eV, with a spin texture that is strongly modulated in both real and momentum space. As well as providing the first experimental evidence for a recently-predicted `hidden' spin polarisation in inversion-symmetric materials, our study sheds new light on a putative spin-valley coupling in transition-metal dichalcogenides, of key importance for using these compounds in proposed valleytronic devices.Comment: 6 pages, 4 figure

    Enhanced Supersymmetry of Nonrelativistic ABJM Theory

    Full text link
    We study the supersymmetry enhancement of nonrelativistic limits of the ABJM theory for Chern-Simons level k=1,2k=1,2. The special attention is paid to the nonrelativistic limit (known as `PAAP' case) containing both particles and antiparticles. Using supersymmetry transformations generated by the monopole operators, we find additional 2 kinematical, 2 dynamical, and 2 conformal supercharges for this case. Combining with the original 8 kinematical supercharges, the total number of supercharges becomes maximal: 14 supercharges, like in the well-known PPPP limit. We obtain the corresponding super Schr\"odinger algebra which appears to be isomorphic to the one of the PPPP case. We also discuss the role of monopole operators in supersymmetry enhancement and partial breaking of supersymmetry in nonrelativistic limit of the ABJM theory.Comment: 22 pages, references added, version to appear in JHE

    Temporal perception deficits in schizophrenia: integration is the problem, not deployment of attentions

    Get PDF
    Patients with schizophrenia are known to have impairments in sensory processing. In order to understand the specific temporal perception deficits of schizophrenia, we investigated and determined to what extent impairments in temporal integration can be dissociated from attention deployment using Attentional Blink (AB). Our findings showed that there was no evident deficit in the deployment of attention in patients with schizophrenia. However, patients showed an increased temporal integration deficit within a hundred-millisecond timescale. The degree of such integration dysfunction was correlated with the clinical manifestations of schizophrenia. There was no difference between individuals with/without schizotypal personality disorder in temporal integration. Differently from previous studies using the AB, we did not find a significant impairment in deployment of attention in schizophrenia. Instead, we used both theoretical and empirical approaches to show that previous findings (using the suppression ratio to correct for the baseline difference) produced a systematic exaggeration of the attention deficits. Instead, we modulated the perceptual difficulty of the task to bring the baseline levels of target detection between the groups into closer alignment. We found that the integration dysfunction rather than deployment of attention is clinically relevant, and thus should be an additional focus of research in schizophrenia
    corecore