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Pontin functions as an essential coactivator for
Oct4-dependent lincRNA expression in mouse
embryonic stem cells
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The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for

the programming of cell states. Although the importance of various epigenetic machineries

for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how

chromatin modifiers cooperate with specific transcription factors still remains largely elusive.

Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator

for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal

that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance.

Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the

transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a

lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together,

our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of

genes involved in ES cell fate determination.
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E
S cells are derived from the inner cell mass of the
mammalian embryos at the blastocyst stage and possess
an unlimited potential for both self-renewal, the ability to

proliferate without a change in phenotype, and pluripotency, the
ability to differentiate into any cell in the organism1,2. ES cell-
specific transcription factors, such as Oct4 and Nanog, have been
identified as key factors for the formation and maintenance of the
inner cell mass during development as well as self-renewal of ES
cells3–7. In addition to the core transcription factors, a subset of
chromatin modifiers has been implicated in pluripotency. The
p300 histone acetyltransferase is predominantly recruited to
Oct4-Nanog binding loci on mouse genome in ES cells8. Lack of
p300 causes abnormal expression of germ layer markers during
embryoid body (EB) formation from ES cells9. Depletion of Tip60
histone acetyltransferase complex, such as Tip60, p400 and
Dmap1, causes loss of ES cell identity including reduction of S
phase in cell cycle, weakened alkaline phosphatase (AP) activities
and abnormal morphology10.

Recent studies have highlighted that non-coding RNAs are
important for both the maintenance of pluripotency and
repression of differentiation programme in ES cells, along with
key transcription factors and chromatin modifiers11–13.
LincRNAs are a subclass of long non-coding RNAs and have
multi-exons and poly-A-tails like messenger RNAs14,15.
LincRNAs have been shown to act in the circuitry controlling
pluripotency and differentiation of ES cells16,17. There are over
200 lincRNAs identified in ES cells, and some of them including
linc1368, linc1577 and linc1634 function to maintain the
pluripotent state through regulation of Oct4 or Nanog
expression18. The majority of lincRNAs expressed in ES cells
are also targets of ES cell-specific transcription factors. Therefore,
lincRNAs may function as downstream targets and/or upstream
regulators of these transcription factors or chromatin
modifiers19–21. Despite the critical roles of lincRNAs in ES cells,
molecular mechanisms for the regulation of lincRNA expression
have not yet been extensively studied.

Proper regulation of chromatin structure by the coordinated
action of transcription factors and chromatin modifiers is
important for cell state-specific gene expression22–27. Pontin is
a chromatin remodelling factor that possesses both ATPase
and DNA helicase activities28–30. Pontin functions as a
coactivator for various transcription factors including androgen
receptor (AR) in prostate cancer, T-cell factor (TCF) in the
Wnt signalling pathway and hypoxia-inducible factor-1a
(HIF-1a) in the hypoxia signalling pathway31–33. It has been
shown that Tip60 histone acetyltransferase complex possesses
Pontin as a component in addition to p40034,35. An RNAi
screen of chromatin proteins identified Tip60-p400 as a critical
regulator complex of ES cell identity. Further, chromatin
remodelling complexes and polycomb group proteins are
implicated in ES cell maintenance36–39. Although these reports
provide clues for the importance of chromatin remodelling
complexes, the underlying mechanisms remain largely
unknown.

Here, we report that Pontin deficiency in ES cells severely
compromises ES cell maintenance and Pontin functions as a
critical coactivator for Oct4. ChIP-sequencing and mRNA-
sequencing analyses identify a substantial amount of overlapping
target genes between Oct4 and Pontin in ES cells. Intriguingly,
a subset of Oct4-dependent lincRNAs is regulated by Oct4-
Pontin module, and these Oct4/Pontin-dependent lincRNAs
are mainly involved in the repression of differentiation pro-
gramme in ES cells. Together, these findings demonstrate a
functional link between lincRNAs and chromatin modifiers,
which is mediated by Oct4 to orchestrate the programming of cell
states in ES cells.

Results
Targeted disruption of Pontin causes defects in ES cell main-
tenance. To explore the biological function of Pontin in vivo, we
generated Pontin-deficient mice by gene targeting in ES cells
(Supplementary Fig. 1a-c). Although Pontin heterozygous
(Pontinþ /� ) mice were fertile and showed no detectable devel-
opmental abnormalities over 1.5-year-observation period, none of
the Pontin-deficient homozygous (Pontin� /� ) animals were
obtained from 168 offsprings (Supplementary Fig. 1d), indicating
that lack of Pontin resulted in embryonic lethality. Analysis of
Pontin� /� embryos revealed that they were competent for
pre-implantation development and died between E3.5 and E7.5
(Supplementary Fig. 1d).

We next examined the roles of Pontin in both survival and
maintenance of pluripotent cells in inner cell mass. A TUNEL
assay, with embryos from heterozygote intercrosses at the
blastocyst stage, showed that Pontin-deficient embryos exhibited
increased apoptotic cell numbers, whereas WT and heterozygous
littermates exhibited little or no apoptotic cells in inner cell mass
(Fig. 1a). Further, Pontin deficiency reduced expression of stage-
specific embryonal antigen-1 (SSEA-1), a marker for murine
pluripotent stem cells (Fig. 1b). Pontin expression was signifi-
cantly reduced during both embryogenesis (Fig. 1c) and in vitro
differentiation process after EB formation (Fig. 1d).

We generated Pontinf/f; CreER ES cells, in which Pontin can be
conditionally deleted by 4-hydroxy tamoxifen (OHT) treatment
(Fig. 1e and Supplementary Fig. 1e). Protein levels of Pontin were
almost completely depleted after 3 days of OHT administration
(Fig. 1f and Supplementary Fig. 1f). To examine whether Pontin
depletion affects ES cell growth, we counted cell numbers over
several days. The growth of Pontin-depleted ES cells was
significantly reduced compared with that of WT (Fig. 1g).
Propidium iodide staining of Pontin-depleted ES cells followed by
fluorescence-activated cell sorter (FACS) analysis of cell cycle-
phase distribution revealed a reduction of S-phase cells (Fig. 1h).
A BrdU incorporation experiment showed a reduction of BrdU-
positive cells in Pontin-depleted ES cells (Fig. 1i). Further, we
measured AP activity, which is high in undifferentiated ES cells
but significantly decreased during differentiation. Pontin-depleted
ES cells showed weak AP staining with loss of ES cell morphology
(Fig. 1j). SSEA-1 expression was significantly reduced in Pontin-
depleted ES cells (Fig. 1k). Together, these data indicate that
depletion of Pontin leads to the defects in ES cell maintenance.
We also examined the role of Pontin in reprogramming of
fibroblasts to induced pluripotent cells (iPSCs). Transduction of
Oct4-promoter-driven-GFP MEFs (pOct4-GFP MEFs) with OSK
(Oct4, Sox2 and Klf4) transgenes induced colonies with ESC
colony-like morphology, and some of them expressed GFP, a
marker of endogenous Oct4 expression. Knockdown of Pontin by
shRNA reduced reprogramming efficiency (Fig. 1l), indicating
that Pontin is important for somatic cell reprogramming.
However, overexpression of Pontin did not affect iPSC formation
efficiency significantly (Supplementary Fig. 1g).

Identification of target genes regulated by Pontin in ES cells.
To gain insights into the underlying mechanisms by which
Pontin contributes to the ES cell maintenance, we performed
genome-wide mRNA-sequencing analysis of Pontinf/f; CreER ES
cells at 0, 3 or 4 days post-treatment with OHT (Fig. 2a). On
average, 55.4 million reads were obtained in individual samples
and aligned to the mouse genome, resulting in 5.3 Giga bps of
mapped sequences, which corresponds to 52.2-fold coverage of
the annotated mouse transcriptome (Supplementary Data 1). To
explore the downstream target genes of Pontin, we compared
gene expression in Pontin-depleted ES cells relative to that of WT
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Figure 1 | Pontin deficiency causes the defects in mouse ES cell maintenance. (a) WT and Pontin-deficient E5.0 embryos were stained using the TUNEL

assay system. Apoptotic cells were shown by TUNEL (green) and nuclei were stained with DAPI (blue). The epiblast cells were immunostained with an

anti-Oct4 antibody (red). Representative images are shown. Right side histogram represents the numbers of TUNEL-positive cells per embryo

(mean±s.d.). P value was calculated by t-test (n¼ 10 for each group; ***P¼ 2.03� 10�8). Magnification �40. (b) Representative images show

decreased SSEA-1 expression (red) in inner cell mass of Pontin-deficient embryos (n¼4 for each group). (c,d) Reduction of Pontin expression during mouse

embryo development stages (c) and EB differentiation (d). (e) Diagram of the strategy for depletion of Pontin using Pontinf/f; CreER ES cells. (f) Depletion of

Pontin in Pontinf/f; CreER ES cells at indicated days after OHT treatment. (g) Growth curves of Pontinf/f; CreER ES cells in the absence or presence of OHT.

These experiments were independently repeated three times. (h) Cell cycle-phase analysis of Pontinf/f; CreER ES cells in the absence or presence of OHT.

Cells were harvested at 3 days after treatment with vehicle (95% EtOH) or OHT. Similar results were obtained from three independent experiments.

(i) BrdU incorporation was used to determine the proportion of the cells in S phase. WTor Pontin-depleted ES cells were harvested at 3 days after vehicle or

OHT treatment. The percentages of BrdU positive cells are graphed. Values are expressed as mean±s.d. of three independent experiments. ***Po0.001.

(j) Representative images show the reduction of AP activity of Pontin-depleted ES cells compared with WT. Cells were stained at 3 days after vehicle or

OHT treatment. Similar results were obtained from three independent experiments. Magnification � 10. (k) SSEA-1 expression in Pontin-depleted ES cells.

Colonies of undifferentiated WT and Pontin-depleted ES cells were stained as indicated. Representative images are shown. Similar results were obtained

from three independent experiments. Magnification � 20. (l) Knockdown of Pontin reduces reprogramming efficiency. The number of GFP-positive

colonies was presented.
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Figure 2 | Identification of target genes regulated by Pontin in mouse ES cells. (a) Up- and downregulated genes in Pontin-depleted ES cells in

comparison with Pontinf/f; CreER ES cells at 3 days (OHT 3D) or 4 days (OHT 4D) versus 0 day post-OHT treatment (-OHT). Hierarchical clustering

identified six clusters of the up- (C1-C3) and downregulated (C4-C6) genes. Numbers of DEGs in the clusters are denoted in parenthesis. The colour bar

represents the gradient of log2-fold-changes in each comparison. (b) Gene Ontology Biological Processes (GOBPs) represented by the up- and

downregulated genes by Pontin depletion (dark bars) and by both Pontin depletion and Oct4 depletion (light bars). The bars for GOBPs represent the

enrichment scores, � log10(p), where p is P value that the GOBPs are enriched. The red line denotes the cutoff, P¼0.1. (c) mRNA-sequencing reads of two

upregulated genes, Timp2 and Tpm1, and two downregulated genes, Rif1 and Ptch1, in Pontin-depleted ES cells. Red and blue bars (y axis) along the genomic

coordinate (x axis) represent read coverages for individual bases of the genes measured at OHT 4D from Pontin-depleted and WT ES cells, respectively.

Each bar graph shows the normalized read counts of the corresponding gene in WT and Pontin-depleted ES cells. (d) Quantitative RT-PCR analysis of

up- and downregulated genes in Pontin-depleted ES cells. The mRNA quantity was normalized by using primers to detect Gapdh. Error bars represent

mean±s.d.; *Po0.05. (e) Comparison of ES cell expression profiles on gene depletion (KO) or knockdown (KD) of the indicated factors using hierarchical

clustering of Pearson correlation coefficients of log2-fold-changes in KO or KD ES cells, compared with WT ES cells. Changes of gene expression in

Dnmt1-depleted ES cells were used as the negative control. (f) Comparisons of binding enrichments of Pontin with those of Oct4, Sox2, Nanog, Tip60 and

p400 from ChIP-sequencing analysis. X axis indicates the sorted genes by Pontin enrichment ratios, log2(Pontin-ChIP/GFP). Left y axis indicates the mean

enrichment ratios of Pontin in individual bins of the sorted genes (500 genes/bin), and right y axis indicates the mean enrichment ratios of the other factors

for the genes in the individual bins defined by Pontin.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7810

4 NATURE COMMUNICATIONS | 6:6810 | DOI: 10.1038/ncomms7810 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


and identified differentially expressed genes (DEGs) that consist
of 1,205 upregulated and 1,678 downregulated genes in Pontin-
depleted ES cells compared with WT (Fig. 2a). The cellular
processes affected by Pontin were then examined by performing
functional enrichment analysis of the DEGs using DAVID soft-
ware40 (Fig. 2b and Supplementary Data 2). This analysis
indicates that the majority of upregulated genes in Pontin-
depleted ES cells are mainly related to differentiation and
embryonic developmental processes, whereas downregulated
genes are involved in cell cycle and metabolism, which are
essential for ES cell maintenance (Fig. 2b). Consistent with this
observation, the genes related to development and differentiation
(that is, Timp2 and Tpm1) are upregulated in Pontin-depleted ES
cells, whereas the genes involved in stem cell maintenance and
metabolism (that is, Rif1 and Ptch1) are downregulated as
evidenced by mRNA sequencing (Fig. 2c) and quantitative
RT-PCR analyses (Fig. 2d).

To understand the association of Pontin with ES-specific
transcription factors and/or chromatin modifiers in transcrip-
tional programme, we compared the mRNA-sequencing data of
Pontin-depleted ES cells with previously reported gene expression
profiles of ES cells deficient of ES cell-specific transcription
factors such as Oct4 and Nanog, and chromatin modifiers such as
Tip60 and p400, which form a histone acetyltransferase complex
with Pontin. For the comparison, we evaluated pair-wise
correlations of the overall changes of gene expression in
Pontin-depleted ES cells with those in ES cells deficient of the
other factors. Interestingly, the analysis revealed that Pontin
showed more significant correlation with Oct4 or Nanog than
Tip60 or p400 (Fig. 2e). The strong correlations of Pontin with
Oct4 or Nanog were confirmed by an independent correlation
analysis (Supplementary Fig. 2a). Further, we performed ChIP-
sequencing using an anti-Pontin antibody and compared the data
with those previously generated with anti-Oct4, Sox2, Nanog,
Tip60 and p400 antibodies in mouse ES cells using correlation
analysis of binding enrichment in the promoter and enhancer
regions8,41 (Fig. 2f and Supplementary Data 1). Consistent with
the above analysis, this correlation analysis revealed that Pontin
exhibited more significant correlation with Oct4 than Sox2,
Nanog, p400 and Tip60. These strong correlations between
Pontin and Oct4 in both mRNA-sequencing and ChIP-
sequencing data indicate that Pontin-Oct4 may regulate a large
number of common target genes cooperatively.

Pontin and Oct4 share a substantial number of target genes in
ES cells. The unexpected observation of the significant overlap
between the expression profiles of Pontin-depleted ES cells and
Oct4-depleted ES cells led us to further explore the functional link
between Pontin and Oct4. To search for their shared target genes,
we further performed mRNA sequencing of Oct4-depleted ES
cells generated from ZHBTc4 cells, a conditional Oct4-depleted
ES cell line, in which Oct4 can be depleted by tetracycline
treatment for 2 days42. The mRNA-sequencing analysis of
Oct4-depleted ES cells showed that 55.2 million reads were
aligned to the mouse genome, resulting in 5.2 Giga bps of mapped
sequences, which corresponds to 54.1-fold coverage of the
annotated mouse transcriptome (Supplementary Data 1).
Similar to the case of Pontin-depleted ES cells, most of
upregulated genes in Oct4-depleted ES cells are involved in
differentiation and developmental processes, whereas down-
regulated genes are involved in self-renewal and metabolism
(Supplementary Data 2).

We compared the DEGs in Pontin-depleted ES cells and
Oct4-depleted ES cells (Fig. 3a and Supplementary Data 3).
Among 1,205 genes upregulated in Pontin-depleted ES cells,

744 genes are regulated by Oct4 (Groups 1 and 2 in Fig. 3a), and
out of 1,678 genes that are downregulated in Pontin-depleted ES
cells, 912 genes are regulated by Oct4 (Groups 3 and 4 in Fig. 3a).
Interestingly, the majority of the upregulated genes by Pontin
depletion are also upregulated by Oct4 depletion (P¼ 9.28
� 10� 41 by Fisher’s exact test) (Fig. 3b and Supplementary
Fig. 2b; see Top 50 shared upregulated genes in Fig. 3c). The
upregulated genes in Group 1 are mainly involved in differentia-
tion and embryonic development processes (Supplementary
Data 2). We confirmed that developmental genes such as Gata6,
Igf2 and Krt18 are upregulated in Pontin-depleted ES cells and
Oct4-depleted ES cells by quantitative RT-PCR analysis (Fig. 3d).
Furthermore, we found a strong correlation among the
downregulated genes in Oct4-depleted and Pontin-depleted ES
cells (P¼ 8.29� 10� 35 by Fisher’s exact test) (Fig. 3b and
Supplementary Fig. 2b; see Top 50 shared downregulated genes in
Fig. 3c). The downregulated genes in Group 3 are closely related
to cell cycle and metabolism, which are important for ES cell
maintenance (Supplementary Data 2). Quantitative RT-PCR
analysis confirmed that Oct4 target genes involved in self-renewal
and ES cell maintenance, such as Lefty1, Otx2 and Fut9/SSEA-1,
are downregulated in Oct4-depleted ES cells and Pontin-depleted
ES cells (Fig. 3d). Some Oct4 target genes such as Nanog and
Mycn are not affected by Pontin. Together, these data indicate
that Pontin and Oct4 share a substantial number of downstream
target genes required for the ES cell maintenance.

To test the possibility that Pontin possesses Oct4 and/or Nanog
binding sites in the promoter and enhancer regions, we examined
binding sites of Oct4 and/or Nanog based on the previous
binding site analysis of two sets of ChIP-sequencing data
(GSE11431 and GSE11724)43. Both data sets predicted no
binding sites of Oct4 or Nanog in the region between 5 kb-
upstream and 1 kb-downstream from the transcription start site
(TSS) of Pontin (Supplementary Fig. 3a). Furthermore, no
significant differences of both protein and mRNA levels of
Pontin were found by Oct4 or Nanog depletion in ES cells
(Supplementary Fig. 3b,c), indicating that Pontin is not a direct
target gene of Oct4 or Nanog.

Pontin functions as a transcriptional coactivator for Oct4 in ES
cells. As Pontin has been shown as a coactivator for many
transcription factors, we checked the possibility that Pontin
functions as a coactivator for Oct4 and forms a specific regulatory
module for downstream target genes. First, we examined mutual
binding of Pontin and Oct4 or Nanog by co-immunoprecipitation
assay and found that endogenous Pontin binds to Oct4, but not
Nanog, in ES cells (Fig. 4a). GST pull-down assay confirmed
direct interaction of Pontin with Oct4 (Fig. 4b). Next, we per-
formed a luciferase assay with reporters driven by Rif1 promoter
possessing functional Oct4 binding elements, based on the
identification of Rif1 as one of Pontin target genes from our
mRNA-sequencing analysis. We constructed two different
luciferase reporter plasmids, one containing Oct4-binding region
(Rif1-800) and the other containing deleted Oct4-binding region
(Rif1-640). Introduction of Oct4 increased Rif1-800 promoter-
luciferase activity, and overexpression of Pontin potentiated
Oct4-dependent activation of Rif1-800 promoter-luciferase
reporter, but not Rif1-640 promoter-luciferase reporter (Fig. 4c),
indicating that Pontin functions as a coactivator for Oct4.
Further, Oct4-mediated increase of Rif1-800 promoter-luciferase
activity was attenuated by knockdown of Pontin (Fig. 4d).

We then performed ChIP assays in Oct4-depleted ES cells
compared with WT ES cells to determine whether Pontin
recruitment is Oct4-dependent. We examined Pontin-dependent
Oct4 target genes such as Lefty1, Otx2 and Rif1, and
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Pontin-independent Oct4 target gene such as Mycn for
comparison. Consistent with previous reports44, Oct4 and p300
were co-recruited to Oct4-binding sites, concomitant with strong

acetylation signal at lysine 27 of histone H3 (H3K27) in WT ES
cells (Fig. 4e). Pontin was also recruited to the Oct4-binding
regions of Lefty1, Otx2 and Rif1, but not that of Mycn. However,
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on Oct4 depletion, recruitment of Pontin and p300 was
significantly diminished to the Oct4-binding regions con-
comitant with the decreased H3K27 acetylation level (Fig. 4e).
We performed two-step ChIP assays to further examine the Oct4
dependency of Pontin and p300 for the target promoter binding.
The elutes from the first immunoprecipitation reaction with an
anti-Oct4 antibody were re-immunoprecipitated with anti-Pontin
or anti-p300 antibody, and the two-step ChIP assays revealed that
the recruitment of Pontin and p300 on the target promoter is
Oct4-dependent (Fig. 4f).

We further examined whether Pontin collaborates with p300
for Oct4-dependent transcriptional activation. First, we examined
whether Pontin binds to p300 at endogenous expression level.
Co-immunoprecipitation assay revealed that Pontin bound to
p300 in ES cells (Supplementary Fig. 3d). Introduction of p300
increased Rif1-800 promoter-luciferase activity by Oct4 and
Pontin, and the increase of Rif1-800 promoter-luciferase activity
by Oct4 and Pontin was attenuated by knockdown of p300
(Supplementary Fig. 3e, f). Next, we compared recruitment of
p300 along with H3K27 acetylation levels by ChIP assays in
Pontin-depleted ES cells. Intriguingly, ChIP assays revealed that
lack of Pontin led to the failure of p300 recruitment along with
reduced H3K27 acetylation levels on the Pontin-Oct4 target genes
such as Lefty1, Otx2 and Rif1, but not on Mycn (Fig. 4g).
Recruitment of neither Oct4 nor Nanog was affected by Pontin
depletion. These results demonstrate that Pontin requires Oct4
binding for its recruitment to the Oct4-Pontin target promoters
and collaborates with p300 to exert transcriptional coactivator
function.

Pontin functions as a coactivator for Oct4-dependent lincRNA
transcription. Chromatin signature mapping and global gene
expression analysis with RNAi screening in ES cells showed that
lincRNAs play a role in the maintenance of self-renewal and
pluripotency. As a subset of lincRNAs has been shown to be
directly regulated by Oct4, we tested the possibility that Pontin
regulates expression of Oct4-dependent lincRNAs. Our analysis
of Oct4 targets affected by Pontin revealed that lincRNAs are
significantly affected by Pontin expression (Fig. 5a). Among the
known 226 lincRNAs expressed in ES cells, 54 lincRNAs are
downregulated in Oct4-depleted ES cells and 16 (30% in Fig. 5a,
P¼ 2.80� 10� 3 by Fisher’s exact test) of the 54 lincRNAs are
also downregulated in Pontin-depleted ES cells (Fig. 5b and
Supplementary Data 4). Interestingly, five lincRNAs (linc1253,
linc1356, linc1517, linc1562 and linc1602) that are co-regulated by
both Pontin and Oct4 from our analysis (denoted with asterisk in
Fig. 5c) have been shown to function as repressors of lineage
differentiation programme in ES cells18. Moreover, the genes that
are upregulated by knockdown of linc1253, linc1356 or linc1517
significantly overlapped with those that are upregulated by Pontin
depletion (false discovery rateo0.1) (Supplementary Fig. 4a).
These analyses support that Pontin and lincRNAs may
collaborate to repress lineage specification programmes in ES
cells. Quantitative RT-PCR analysis confirmed that lack of either
Oct4 or Pontin resulted in downregulation of transcript levels of
five lincRNAs that function to repress lineage differentiation
programme (Fig. 5d).

Next, we examined whether lincRNA transcription is coregu-
lated by Oct4 and Pontin as in the case of protein-coding gene
transcription. Thus, we designed luciferase reporter constructs of
the Oct4-dependent linc1253 promoter and examined whether
Oct4-binding site is crucial for the activity of linc1253 promoter.
We constructed two different linc1253 promoter-luciferase
reporters, one containing Oct4-binding region (linc1253-1000)
and the other with deleted Oct4-binding region (linc1253-500).
Introduction of Pontin further increased Oct4-dependent

linc1253-1000 promoter-luciferase activity (Fig. 5e). Introduction
of neither Oct4 nor Pontin increased linc1253-500 promoter-
luciferase activity. Consistently, Oct4-dependent induction of
luciferase activity from linc1253-1000 promoter was attenuated by
knockdown of Pontin (Fig. 5e), suggesting that Pontin functions
as a coactivator of Oct4-dependent lincRNA transcription.
Together, these results indicate that coactivator function of
Pontin is mediated by Oct4 binding to the linc1253 promoter.

Characterization of linc1253 that is cooperatively regulated by
Oct4-Pontin module. To further investigate whether Pontin is
recruited to lincRNA loci through Oct4 binding sites along with
Oct4 and p300 in ES cells, we performed ChIP assays on the
linc1253, linc1356 and linc1562 loci in WT, Oct4-depleted and
Pontin-depleted ES cells. For these lincRNA loci, Pontin and
Oct4, along with p300, were corecruited to Oct4-binding sites,
concomitant with strong H3K27 acetylation signal in WT ES cells
(Fig. 6a). Similar to other Oct4-Pontin target genes, depletion of
Oct4 led to the failure of recruitment of Pontin, Nanog and p300,
with reduction of H3K27 acetylation levels (Fig. 6a). The
recruitment of Oct4 and Nanog to the linc1253, linc1356 and
linc1562 loci were not affected by lack of Pontin, but the
recruitment of p300 along with H3K27 acetylation levels was
drastically decreased in Pontin-depleted ES cells (Fig. 6b). These
data confirm that Pontin functions as a transcriptional coacti-
vator along with p300 for Oct4-Pontin target lincRNAs in an
Oct4-dependent manner. Among the Oct4-Pontin target lincR-
NAs, linc1253 is one of the most significantly downregulated
lincRNAs in both Pontin-depleted ES cells and Oct4-depleted ES
cells (Supplementary Fig. 4a and Supplementary Data 4).

We further characterized the gene/isoform structure, genomic
location, coding probability and subcellular localization of
linc1253. The mRNA-sequencing data of human ES cells (H1
and H9 cells)45 revealed no evidence for linc1253 expression,
suggesting that linc1253 may not be conserved in humans. On the
basis of the 30 rapid amplification of cDNA ends (RACE)
experiment followed by cDNA cloning, we found that linc1253 is
an B1,500-nucleotide transcript comprising three exons at the
locus of chr10: 94,906,836–94,923,359 (minus strand) (Fig. 6c),
which is consistent with our mRNA-sequencing data in ES cells
(Fig. 6d). According to the UCSC genome browser, there were
two mouse expressed sequence tags (CJ063160 and CJ133752)
covering this locus. Results from the 30 RACE and mRNA
sequencing analyses indicate that there are no isoforms at least in
ES cells. Next, we assessed coding potential across the mature
RNAs using the Coding Potential Assessment Tool (CPAT)46.
According to the coding probability distribution of protein-
coding genes and lincRNAs, linc1253 showed a very low coding
probability of 0.058, indicating that this transcript is non-coding
(Fig. 6e). We quantified the linc1253 transcript levels in both
nuclear and‘ cytoplasmic fractions of ES cells by quantitative
RT-PCR analysis, and found that linc1253 mainly resides in the
nucleus (Fig. 6f). In situ hybridization analysis of linc1253
confirmed exclusive localization of linc1253 in the nucleus
(Fig. 6g).

Molecular mechanism of regulation of linc1253 by the
Oct4-Pontin module. To compare the genes regulated by
linc1253 and Pontin, we further performed mRNA sequencing of
ES cells after knockdown of linc1253 by lentiviral shRNA and
identified 838 DEGs (Supplementary Data 1,3). Consistent with
the DEGs in Pontin-depleted ES cells, the upregulated genes in
linc1253 knockdown ES cells are mainly involved in differentia-
tion and development, whereas the downregulated genes are
involved in metabolism and ion homeostasis (Supplementary
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Data 2). The log2-fold-changes in linc1253-knockdown ES cells
showed a high positive correlation with those in Pontin-depleted
ES cells (Fig. 7a and Supplementary Fig. 4b). Consistently,
the upregulated genes by linc1253 knockdown significantly

(P¼ 4.04� 10� 78 by Fisher’s exact test) overlapped with those
by Pontin depletion (Fig. 7b). Among the commonly upregulated
genes by the depletions of linc1253 and Pontin in ES cells
(Fig. 7c), we selected two representative development-related

30 %

a

c

e

b

d

Oct4 targets affected by Pontin
Down regulated lincRNAs

among 226 lincRNAs identified in ES cell

16 LincRNAs down regulated
in Pontin KO/Oct4 KO ES cells

WT

0

1

0.5

0

– OHT

– Tc
+ Tc 2D

ZHBTc4

Oct4 binding region
–717

–1,000

–500

+100

+100

–707

+ OHT 3D
+ OHT 4D

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

–1

–2

–3

12

8

**

** **
**

4

0

12

8

8

6

4

2

0

4

0
–
– – + +

+ – +Pontin
Oct4

–
– – + +

+ – + –
– –

– ––

+

+

++
+ ++

Pontin
Oct4 shPontin

shNS

Oct4

KO KO

Linc1587
Linc1405
Linc1611

Oct4 KO Pontin KO

38

qRT-PCR
Pontin Oct4

Linc1356Linc1253

Linc1562

Linc1253 - 1000

Linc1253 - 1000 Linc1253 - 500

Linc1253 - 1000

Linc1253 - 1000

Linc1253 - 500Linc1253 - 500

Linc1602

Linc1517

16 20

P = 2.80×10–3

20 %

10 %

0
Tr

an
sc

rip
tio

n

fa
ct

or
s

Epi
ge

ne
tic

s

re
gu

la
to

rs
Sig

na
l

tra
nd

uc
er

s
Li

nc
RNAs

Linc1385
Linc1423
Linc1602*
Linc1356*

Linc1562*

Linc1253*
Linc1517*

Linc1369
Linc1306
Linc1561
Linc1312
Linc1294

Linc1289

Lo
g 2

(f
ol

d-
ch

an
ge

)

– 
OHT

OHT 3
D

OHT 4
D
Tc 2

D

R
el

. t
ra

ns
cr

ip
t l

ev
el

R
el

. t
ra

ns
cr

ip
t l

ev
el

*
* *

*

*

*

*
*

* *
*

*
*

*

*

Pontinf/f;
CreER

Luciferase

Luciferase

R
. L

. U
.

R
. L

. U
.

R
. L

. U
.

Figure 5 | Pontin is required for transcription of a subset of lincRNAs regulated by Oct4. (a) Proportions of the downregulated genes in Pontin-depleted

ES cells out of those in Oct4-depleted ES cells. (b) Venn diagram of the downregulated lincRNAs in Oct4-depleted and Pontin-depleted ES cells. Sixteen

lincRNAs are downregulated in both Pontin-depleted and Oct4-depleted ES cells. (c) List of 16 lincRNAs that are downregulated in both Oct4-depleted

and Pontin-depleted ES cells. Asterisk (*) denotes the lincRNAs previously reported to function in repression of lineage specification process in ES cells.

(d) Quantitative RT-PCR analysis of five lincRNAs involved in repression of differentiation processes among 16 lincRNAs that are downregulated in both

Pontin-depleted and Oct4-depleted ES cells. The quantity of lincRNA was normalized by using primers to detect Gapdh. Values are expressed as mean±s.d.

of three independent experiments. *Po0.05. (e) Luciferase assay was performed with reporters driven by linc1253 promoter possessing Oct4-binding

elements (linc1253-1000) or deleted Oct4-binding region (linc1253-500). Luciferase activities were normalized by b-galactosidase activity. Values are

expressed as mean±s.d. of three independent experiments. **po0.01.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7810 ARTICLE

NATURE COMMUNICATIONS | 6:6810 | DOI: 10.1038/ncomms7810 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


genes (Gata6 and Bmp1). Quantitative RT-PCR analysis con-
firmed that loss of linc1253 increased transcript levels of Gata6
and Bmp1, although those of Igf2 and Hand1 were not changed
(Fig. 7d). These results indicate that linc1253 regulated by the
Oct4-Pontin module is involved in the repression of a subset of
developmental genes in ES cells.

Ezh2 is a key component of polycomb repressive complex
(PRC) 2 and possesses a methyltransferase activity on histone
H3K27. Recent studies have reported that nuclear lincRNAs are
functionally linked to chromatin-modifying proteins containing
Ezh2 and various transcription factors47,48. To examine whether
linc1253 has a role in Ezh2-mediated repression of developmental
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genes, we tested the possibility that linc1253 physically associates
with Ezh2. We performed RNA immunoprecipitation (RIP)
assays using antibodies specific to Ezh2, Pontin and Oct4, and
found that Ezh2 associates with linc1253 (Fig. 7e). Neither Pontin
nor Oct4 exhibited comparable binding to linc1253 (Fig. 7e). We
then performed ChIP assays in ES cells after knockdown of
linc1253 by lentiviral shRNA to determine whether Ezh2
recruitment and tri-methylation of histone H3K27 on target
gene loci are affected by loss of linc1253. On depletion of linc1253,
recruitment of Ezh2 concomitant with H3K27 tri-methylation
was significantly diminished to the linc1253-dependent target
gene loci (Fig. 7f). These results indicate that linc1253 collaborates
with Ezh2 to exert its repressive functions on target genes.

In addition to loss-of-function studies, we carried out gain-of-
function studies for linc1253. We examined the effect of linc1253
overexpression in reprogramming efficiency and found that
linc1253 overexpression did not affect reprogramming efficiency
(Supplementary Fig. 4c). To determine whether overexpression of
linc1253 reverses upregulation of developmental genes in Pontin-
depleted ES cells and Oct4-depleted ES cells, we transduced
Pontinf/f; CreER ES cells or ZHBTc4 ES cells with lentivirus
expressing control GFP or linc1253. In GFP-infected ES cells,
depletion of either Pontin or Oct4 induced expression of Gata6
and Bmp1 drastically (Fig. 7g,h). However, drastic induction of
Gata6 and Bmp1 expression in Pontin-depleted and Oct4-
depleted ES cells was significantly attenuated by overexpression
of linc1253 (Fig. 7g,h). These data indicate that ectopic expression
of linc1253, at least partially, attenuated upregulation of
developmental genes in Pontin-depleted ES cells and Oct4-
depleted ES cells. Our findings demonstrate that linc1253
functions as an important factor acting in the downstream of
the Oct4-Pontin axis, attenuating a subset of genes involved in
lineage programme in ES cells.

Discussion
Our findings demonstrate a regulatory network in ES cells
whereby Pontin directly activates the expression of both
lincRNAs involved in repression of differentiation processes
and protein-coding genes required for the ES maintenance as a
transcriptional coactivator in an Oct4-dependent manner
(Fig. 7i). It has been shown that lincRNAs conduct diverse and
distinct biological functions including trans-acting gene regula-
tion (HOTAIR)49, imprinting (Air and H19)50,51, X-chromosome
inactivation (Xist and Tsix)52, nuclear shuttling (Nron)53 and
somatic tissue differentiation (Braveheart and TINCR)54,55.
Although lincRNAs identified in ES cells have been shown to
regulate the cell states by both maintaining the pluripotency
programme and repressing differentiation programme, it remains
largely unknown how these lincRNAs are controlled and which
factors lie upstream.

We identified Pontin as a key factor for Oct4-dependent
lincRNA transcription processes in ES cells. Pontin and Oct4
show functional cooperation for the transcriptional activation of
Oct4 target lincRNAs. It is intriguing that the mode of Oct4 and
Pontin for the regulation of lincRNA transcription is similar to
that of protein-coding gene transcription. Pontin activates Oct4-
dependent lincRNA transcription as a coactivator and the binding
of Pontin to the lincRNA loci is mediated by Oct4. Although the
functional outcome of transcriptional activation of Oct4 target
lincRNAs and Oct4-dependent protein-coding genes by Pontin is
distinct, the net result is to favour ES cell maintenance. Pontin
appears to acquire maximum efficiency to maintain ES cell
identity by regulating transcription process of both lincRNAs and
protein-coding genes in an Oct4-dependent manner. It could be
one of the prototypes for chromatin modifiers to regulate ES cell

identity. Our finding that a group of Oct4 target genes are not
dependent on Pontin suggests that Pontin recruitment to Oct4
binding sites may be context-dependent and/or regulatory
element-dependent. It will be challenging to find what could
be determinants to decide Pontin dependency to the Oct4
target genes.

Intriguingly, Oct4 binding to target genes is not affected by
Pontin, but lack of Pontin is sufficient for perturbation of ES cell
maintenance. On the basis of the failure of p300 recruitment to
the Oct4-Pontin target genes in Pontin-depleted ES cells, we
speculate that Pontin accommodates p300 recruitment for
transcriptional activation of Oct4-Pontin target genes. Therefore,
Pontin functions as a critical factor for p300 recruitment to
Oct4-Pontin target genes. It is consistent with the notion that
chromatin remodelling process is preceded by histone modifica-
tions to initiate efficient transcription processes. Some histone-
modifying enzymes have been shown to have a variety of crucial
functions for ES cell maintenance. A histone methyltransferase
Ezh2 is required for the early embryogenesis and establishment of
ES cell56. Ring1A/B, the core components of PRC1, are required
for the maintenance of ES cell identity. In the Ring1A/
B-double KO ES cells, proliferation is halted and the cells lose
typical ES cell morphology57. Depletion of Mll2 histone
methyltransferase causes increase of apoptosis and skewed
differentiation with decreased SSEA-1 expression in ES cells58.

Together, our findings demonstrate that Pontin, Oct4 and
lincRNAs are important regulatory components within the ES cell
circuitry and efficiently orchestrate the cell fate programme by
forming a functional module. We anticipate that identification of
new ES cell-specific lincRNAs associated with chromatin
modifiers will lead to a better understanding of cell fate decision
programme.

Methods
Generation of conditional Pontin-deficient mice. To create a conditional
targeting vector in which exon 3 of the Pontin gene was flanked by loxP sites,
a 13-kb region used to construct the targeting vector was first subcloned from a
BAC clone (bMQ403n16, Source BioScience) into a pBluescript phagemid system.
The FRT-flanked puromycin cassette containing a loxP sequence was inserted at
the 30 and the single loxP site was inserted at the 50 of exon 3. The target region was
B2.5 kb and included exon 3. Twenty micrograms of the targeting vector was
linearized by NotI restriction enzyme and then transfected to E14Tg2A ES cells by
electroporation. After puromycin selection, surviving clones were expanded to
identify recombinant ES clones by Southern blot analysis. For XbaI digestion, the
bands representing WT and mutant alleles are 13 and 5.2 kb, respectively. Targeted
ES cells were microinjected into C57BL/6 blastocysts that were used to generate
chimeras. The male chimeras were mated to C57BL/6 female mice to obtain F1
heterozygous offspring. Puromycin selection cassette was deleted by crossing
targeted heterozygous F1 with Flp deleter strain (FLPeR mice, The Jackson
Laboratory strain 003946). All mice used for this work were backcrossed to
C57BL/6 at least five generations. This study was reviewed and approved by the
Institutional Animal Care and Use Committee (IACUC) of National Cancer
Center Research Institute and Seoul National University.

Genotyping. The primers used in PCR analysis for genotyping heterozygous mice
are: Pair A 50-ACTCACTCTGTGGAGCAGAC-30 and 50-ACCTTACCTGCGCT
CCCATC-30 ; Pair B 50-CTACAGTCTCAGCACTCAGG-30 and 50-CCATTTGT
CACGTCCTGCAC-30 ; Pair C 50-CAACCTCCCCTTCTACGAGC-30 and 50-ACC
TTACCTGCGCTCCCATC-30. The primers used in PCR analysis for genotyping
floxed alleles and deleted alleles are: 50-TCGAGGCAGGAGTACCAGGC-30 ,
50-TTCAGGACAGCAGACTCTGG-30 and 50-CTCTGCCTGTGAAACCAT
ACC-30 .

Antibodies. The following commercially available antibodies were used: anti-Oct4
(C-10) and anti-p300 (C-20, N-15, and H-272) antibodies from Santa Cruz
Biotechnology; anti-Pontin (SAB4200194) antibody from Sigma-Aldrich;
anti-Nanog (ab21624) and anti-H3K27Ac (ab4729) antibodies from Abcam;
anti-H3 (#2650) antibody from Cell Signaling Technology; anti-Ezh2 (#612667)
antibody from BD bioscience; and anti-SSEA-1 (MAB2155) antibody from R&D
systems. Working dilutions or quantities of the antibodies used in the study are
summarized in Supplementary Table 1.
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Quantitative real-time RT-PCR. The abundance of mRNA and lincRNA was
detected by an ABI prism 7300 system with SYBR Green (Enzynomics). The
quantity of mRNA and lincRNA was calculated using DDCt method and nor-
malized by using primers to detect Gapdh. All reactions were performed as tri-
plicates. The following primers were used: Oct4 forward 50-GGCTTCAGACTTC
GCCTCC-30, reverse 50-AACCTGAGGTCCACAGTATGC-30 ; Nanog forward
50-TCTTCCTGGTCCCCACAGTTT-30, reverse 50-GCAAGAATAGTTCTCGG
GATGAA-30 ; Ptch1 forward 50-AAAGAACTGCGGCAAGTTTTTG-30, reverse
50-CTTCTCCTATCTTCTGACGGGT-30 ; Rif1 forward 50-ACTGACTCCGGGA
CATAAAGG-30 , reverse 50-ATAGAAGGGATTGCAGCCATTC-30 ; Tpm1 forward
50-CAGAAGGCAAATGTGCCG AG-30 , reverse 50-TCCAGCATCTGGTGC
ATACTA-30; Timp2 forward 50-TCAGAGCCAAAGCAGTGAGC-30 , reverse
50-GCCGTG TAGATAAACTCGATGTC-30; Lefty1 forward 50-CCAACCGCAC
TGCCCTTAT-30 , reverse 50-CGCGAAACGAACCAACTTGT-30 ; Otx2 forward
50-TATCTAAAGCAACCGCCTTAC G-30 , reverse 50-AAGTCCATACCCG
AAGTGGTC-30 ; Fut9 forward 50-TCGCCCATTTCTAATCGTCTGC-30 , reverse
50-AGACTCCATTGGACTGAAGACC-30 ; Gata6 forward 50-TTGCTCCGGTA
ACAGCAGTG-30 , reverse 50-GTGGTCGCTTGTGTAGAAGGA-30 ; Igf2 forward
50-GTGCTGCATCGCTGCTTAC-30 , reverse 50-GACAAACTGAAGCGTGTCAA
C-30 ; Krt18 forward 50-CAGCCAGCGTCTATGCAGG-30 , reverse 50-CTTTCT
CGGTCTG GATTCCAC-30 ; Mycn forward 50-ACCATGCCGGGGATGATCT-30 ,
reverse 50-ATCTCCG TAGCCCAATTCGAG-30 ; Bmp1 forward 50- TTGTA
CGCGAGAACATACAGC-30 , reverse 50-CTGAGTCGGGTCCTT TGGC-30 ;
Hand1 forward 50-GGCAGCTACGCACA TCATCA-30 , reverse 50-CCTGGCAT
CGGGACCATAG-30 ; linc1253 forward 50-TGCAGGTTCATAATTCATGGC-30 ,
reverse 50-AATGGAATGCTTTGTCACCAC-30 ; linc1562 forward 50-CTG
GATCTGAGAGACGACCC-30, reverse 50-GAAATGCTCTGGAGACGGAG-30 ;
linc1356 forward 50-TCTGTTTCCGAATTGAAGGC-30 , reverse 50-GTTTCCCA
AATCAGCAGCTC-30 ; linc1517 forward 50-TTATACCGAAACCGGGAACTC-30 ,
reverse 50-AGCAAAGCTGGTCAGGAGAC-30; linc1602 forward 50-CCTGAGC
CTTCTGTGGTCTC-30 , reverse 50-CTCTTGGAGTGCTTCATCTGG-30 . Values
are expressed as mean±s.d. of three independent experiments.

GST pull-down assays. The recombinant GST-Pontin was expressed using the
pGEX-4T1-Pontin vectors. The coding regions of Oct4 were inserted into the
pcDNA vector containing T7 promoter. 35S-methione-labelled Oct4 was produced
using an in vitro transcription and translation assay kit (TNT Quick Coupled
Transcription/Translation system; Promega), according to the manufacturer’s
instructions.

ChIP and two-step ChIP assays. The ChIP assays were conducted as described.
Cells were crosslinked with 1% formaldehyde for 10 min at room temperature,
and formaldehyde was inactivated by the addition of 125 mM glycine. Chromatin
extracts containing DNA fragments with an average size of 400 bp were
immmunoprecipitated by using antibodies. Quantitative PCR was used to measure
enrichment of bound DNA, and the value of enrichment was calculated by relative
amount to input and ratio to IgG. All reactions were performed in triplicates. For
the two-step ChIP assays, components were eluted from the first immunopreci-
pitation reaction by incubation with 10 mM dithiothreitol at 37 �C for 30 min and
diluted 1:50 in ChIP dilution buffer (20 mM Tris-HCl, pH 8.1, 150 mM NaCl,
2 mM EDTA and 1% Triton X-100) followed by re-immunoprecipitation with the
second antibodies. Two-step ChIP assay was performed in essentially the same way
as the first immunoprecipitations. The following primers were used: Lefty1 forward
50-CTGGATTGTCTTTGGGGAAA-30 , reverse 50-CCCCAATCCACATTCA
CTTC-30 ; Otx2 forward 50-CTCCAAATGCACGCTCTACA-30, reverse 50-TAGCT
AGTGC CAGCCAATGA-30 ; Rif1 forward 50-GTCCCCACTCTCAGAAGCTG-30 ,
reverse 50-ACGC ATTCAAGCTTTGGTCT-30 ; Mycn forward 50-TTAGCGAATC
CTTGCTACCG-30 , reverse 50-CTTCGGAAAGGCTTTTGTTG-30 ; linc1253
forward 50-TTGCCTCCTCAAGAAATGC T-30 , reverse 50-CATGGCTCCAGTTC
CTCTGT-30; linc1356 forward 50-ACCCA CAGGCT CCTAGGTTT-30 , reverse
50-TCCAAGCTGTTCTCCCAACT-30 ; linc1562 forward 50-CAGAGAGAGGGAA
GCAATGG-30 , reverse 50-GAATGGCTCAGTGTGGGAAT-30. Values are
expressed as mean±s.d. of three independent experiments.

Construction of reporter plasmids and luciferase reporter assay. Each pro-
moter region was cloned into a pGL2-basic reporter vector (Promega) by using the
PCR method. Oct4-binding sites were identified from previous reports18,41,59.
The primers used were: linc1253-1000 XhoI forward 50-CACCTCGAGTGGAGC
TTCAGTCCCCGA-30 , KpnI reverse 50-CACGGTACCGTAAGATGGGAATATT
GTCTGG-30 ; linc1253-500 XhoI forward 50-CACCTCGAGTGGAGCTTCAGTCC
CCGA-30 , KpnI reverse 50-CACGGTACC TTATGTGCTAGTTAGGGTAACT-30 ;
Rif1-800 KpnI forward 50-CACGGTACCTGTGGA GAGTGCTGAGAGG-30,
XhoI reverse 50-CACCTCGAGCCTGACTCCAGCTACTTGC-30 ; Rif1-640 KpnI
forward 50-CACGGTACCCATGGGTCTCCTTTAGCAAC-30 , XhoI reverse
50-CACCTCGAGCCTGACTCCAGCTACTTGC-30. About 0.2–0.4 mg of pCAG-
Oct4, 0.3–0.6 mg of pCAG-Pontin, 0.2 mg of pGL2-Rif1 promoter-luciferase and
0.1 mg of pGL2-linc1253 promoter-luciferase plasmid were used for co-transfection.
For knockdown of Pontin, 10–20 ml of pLKO-shPontin lentiviral stock was used.
293 T cells were transiently transfected with each promoter-luciferase reporter

plasmid using PEI transfection reagent (Sigma-Aldrich). Luciferase activity was
measured in a luminometer at 48 h after transfection and normalized by b-
galactosidase expression with a Luciferase system (Promega). Values are expressed
as means±s.d. of three independent experiments.

Lentivirus construction and production. To knockdown Pontin, p300 or
linc1253, the shRNA pLKO.1 lentiviral vectors targeting Pontin (pLKO-shPontin),
p300 (pLKO-shp300) or linc1253 (pLKO-shlinc1253) were cloned from targeting
sequences. The targeting hairpin sequences are linc1253 50-GTGTAGGAGCTG
GGATGAAAT-30, p300 50- AATACCTCGTGATGCCACTTA-30 and Pontin
50-AAGGGGAGGTGACAGAGCTCA-30 . For ectopic expression of linc1253, we
cloned linc1253 cDNA into the pLJM1 lentivirus vector (pLJM1-linc1253). On the
basis of the size determined by 30RACE PCR, linc1253 cDNA was PCR-amplified
using the following primers: forward 50-CCAACCGGTGGAAATGGAATGCTT
TGTCAC-30 , reverse 50- CCAGAATTCCCCTGGGACTAATGGAGGT-30. For
ectopic expression of Pontin, we cloned Pontin cDNA into the same vector.
Lentivirus production was performed as described. The lentiviral vector was
co-transfected with packaging vectors (psPAX2 and VSV-G) into 293 T cells. The
resultant supernatant was collected at 48 h after transfection and filtered through
a 0.45-mm membrane. For concentration of lentivirus, Retro-X concentrator was
used according to the manufacturer’s instructions (Clonetech). At 48 h after
transduction, puromycin (1 mg ml� 1) was added to the medium to select
transduced cells.

FACS analysis. Cell cycle profiling of propidium iodide stained cells was per-
formed as described. Fractions of cells in each phase were quantified using FlowJo
software. Cells were trypsinized and then fixed in 70% ethanol at 4 �C. After
fixation, the cells were incubated with RNase A (10mg ml� 1), Nonidet P-40
(0.05%) and propidium iodide (50mg ml� 1) for 1 h. For the BrdU FACS analysis,
cells were incubated for 10 min in the presence of BrdU (10 mM). Harvested cells
were fixed in 70% ethanol at 4 �C and denatured in 2 N HCl, 0.5% Triton X-100 for
1 h. The cells were then neutralized with 0.1 M Na2B4O7 (pH 8.5) and incubated
with a BrdU antibody and FITC-conjugated secondary antibody in PBS containing
1% BSA and 0.5% Tween 20 for 1 h each. Cells were stained with propidium
iodide solution and then analysed using the FACS Caliber flow cytometer (BD
Biosciences). Cell cycle and DNA contents were analysed using FlowJo software.

ES cell culture. Mouse ES cells were cultured as described previously59. In brief,
ES cells were either co-cultured with mouse primary embryonic fibroblast feeders
or cultured under feeder-free conditions. ES cells were maintained in Dulbecco’s
modified Eagle medium (DMEM; Welgene), supplemented with 15% fetal bovine
serum (FBS; Hyclone), 0.055 mM b-mercaptoethanol, 2 mM L-glutamine, 0.1 mM
nonessential amino acid, 5,000 units ml� 1 of penicillin/streptomycin (GIBCO) and
1,000 units ml� 1 of leukaemia inhibitory factor (LIF) (Chemicon). A conditional
Oct4-depleted (ZHBTc4) ES cell line was described previously42. Oct4-depleted
cells were generated by treating ZHBTc4 ES cells with tetracycline for 2 days.
Pontinf/f; CreER ES cells were derived from blastocysts from intercrosses between
Pontinf/f; CreER and Pontinf/f mice. CreER transgenic mice were purchased from
Jackson laboratory. Pontin-depleted ES cells were generated by treating Pontinf/f;
CreER ES cells with OHT for 3 or 4 days. Immunoblot analyses showing depletion
of Pontin or Oct4 were independently repeated three times.

Co-immunoprecipitation. ZHBTc4 ES cells were cultured and lysed with lysis
buffer (200 mM NaCl, 50 mM Tris-HCl, pH 8.0 and 0.5% NP40). About 20 mg of
ES cell extracts was immunoprecipitated with each 2 mg of control IgG, anti-Oct4
antibody, anti-Nanog antibody or anti-Pontin antibody overnight and then incu-
bated with 50ml (50% slurry) of protein A agarose beads for 1 h. The immuno-
precipitated materials were washed with 500 ml of washing buffer (150 mM NaCl,
50 mM Tris-HCl, pH 8.0, and 0.5% NP40) for four times and bound materials were
eluted by boiling in 50 ml of sampling buffer (2% 2-mercaptoethanol, 5% glycerol,
1% SDS and 60 mM Tris-HCl, pH 6.8) and subjected to immunoblot analysis.
Protein samples were resolved with 12% SDS polyacrylamide gel, and 25 ml of
eluted samples were loaded in each well. The resolved proteins were transferred to
PVDF membranes, and the membranes were incubated with primary antibodies
(1/1,000) at 4 �C overnight, washed and detected using HRP-conjugated secondary
antibodies (light chain-specific, Jackson laboratory). Images of the immunoblots
were visualized and recorded using the LAS 4000-mini system (Fujifilm). These
experiments were independently repeated three times.

30- RACE. To determine the size of linc1253, we performed 30-RACE as previously
described60. In brief, RACE was carried out by using 1.5 mg of total RNA extracted
from ZHBTc4 ES cells. The Oligo-dT adapter primer (50-GCTCGCGAGCGCG
TTTAAACGCGCACGCGTTTTTTTTT TTTTTTTTT-30) was used in the reverse
transcription. The first PCR reaction was performed by using linc1253 forward 1
primer (50-AATGGAATGCTTTGTCACCAC-30) and the first adaptor primer
(50-GCTCGCGAGCGCGTTTAAAC-30). Amplification was performed as follows:
initial denaturation for 1 min at 95 �C, denaturation for 30 s at 95 �C, annealing for
30 s at 60 �C, extension for 5 min at 72 �C and repeated for 35 cycles. The obtained
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band was gel purified and PCR-amplified with linc1253 forward 2 primer (50-CCA
CTCCTCCGA GCAACACAG-30) and the second adaptor primer (50-GCGTTT
AAACGCGCACGCGT-30). Amplification was performed as follows: initial
denaturation for 1 min at 95 �C, denaturation for 30 s at 95 �C, annealing for 30 s at
56 �C, extension for 1 min at 72 �C and repeated for 35 cycles. The obtained band
was gel purified and sequenced. These experiments were independently repeated
three times.

mRNA and ChIP sequencing. We obtained total RNAs from (1) Pontinf/f; CreER
ES cells at 0, 3 or 4 days post treatment with OHT for Pontin-depleted ES cells, (2)
ZHBTc4 ES cells at 2 days post treatment with tetracycline for Oct4-depleted ES
cells and (3) ZHBTc4 ES cells infected by pLKO-shLuciferase (shNS) or pLKO-
shlinc1253 lentivirus at 4 days post infection for knockdown of linc1253. Poly(A)
mRNA isolation from total RNA (5 mg) and fragmentation was performed using
the Illumina Truseq RNA Sample Prep Kit with poly-T oligo-attached magnetic
beads, according to the manufacturer’s instructions. Reverse transcription of RNA
fragments was performed using Superscript II reverse transcriptase (Life Tech-
nologies). The adaptor-ligated library was size-selected by band excision after
agarose gel electrophoresis and purified using the QIAquick gel extraction kit
(Qiagen). The prepared libraries were sequenced on an Illumina Hi-Seq 2000
(DNA Link, Korea) and Hi-Seq 2500 (NICEM, Seoul National University). A ChIP
assay for preparation of ChIP-seq libraries was carried out as described pre-
viously59. In brief, ZHBTc4 ES cells were crosslinked with 1% formaldehyde for
10 min at room temperature, and formaldehyde was inactivated by the addition of
125 mM glycine. Chromatin extracts containing DNA fragments with an average
size of 400 bp were immmunoprecipitated by using antibodies against GFP
(control) or Pontin. Eluted ChIP DNA was used for preparing the libraries using
the NEXTflex ChIP-seq kit (Illumina), according to the manufacturer’s
instructions. The prepared libraries were sequenced on an Illumina Hi-seq 2500
(NICEM, Seoul National University).

Analysis of mRNA- and ChIP-sequencing data. For both sequencing data, we
first removed adapter sequences (TrueSeq universal and index adapters) and then
trimmed the ends of the adapter-free reads for which PHRED scores were lower
than 20 using the cutadapter software61. Remaining reads were then aligned to
the mouse reference genome (NCBIM 37) using TopHat aligner62 for mRNA
sequencing and using Bowtie2 (ref. 63) for ChIP sequencing. For the mRNA-
sequencing data, considering the variations in individual genomes and presence of
multiple gene copies, we used two mismatches in a read and allowed the reads to be
aligned in up to 10 different locations, which are default options in the TopHat
aligner. After the alignment, we counted the number of reads mapped to gene
features (GTF file of NCBIM 37) using HTSeq. To reduce the technical variations
across the samples, we normalized the read counts using the TMM method64 that
uses RNA compositions and library sizes between the samples provided by edgeR
package65 in R. For the ChIP-sequencing data, among the aligned reads, only the
reads uniquely aligned and with MAPQ scores 45 were used for further analysis.

Identification of DEGs. We first identified ‘expressed’ genes as the genes with
normalized read counts (counts per million) 41 under at least one of the four
conditions (WT ES cell, Pontin-depleted ES cells (3 days and 4 days post-OHT
treatment) and Oct4-depleted ES cells (2 days post-Tc treatment)). For these
expressed genes, we computed log2-read counts after adding one to the normalized
read counts and then log2-fold-changes in the comparison of Pontinf/f; CreER ES
cells at 3 days or 4 days post-OHT treatment (Pontin-depleted ES cells) and
ZHBTc4 ES cells at 2 days post-tetracyclin treatment (Oct4-depleted ES cells)
versus Pontinf/f; CreER ES cells at 0 days post-OHT treatment (WT ES cells). Using
the log2-fold-changes for each comparison, we identified the genes as DEGs
with absolute log2-fold changes 40.58 (1.5-fold). To identify DEGs by linc1253
knockdown, we first selected ‘expressed’ genes with normalized read counts
41 under at least one of the four samples, duplicated samples of each WT ES cells
and linc1253-knockdown ES cells. From these expressed genes, we performed the
exact test in edgeR package and log2-median ratio test. After separately computing
P values from the two tests, we combined the P values using Stouffer’s method66

and then selected the DEGs by linc1253 knockdown as the ones with the combined
Po0.05. False positives were further reduced by excluding the genes with log2-
median ratioo0.378, the mean of 2.5th and 97.5th percentiles of the log2-median
ratios obtained from random permutations of the four samples.

Functional enrichment analysis. To identify cellular processes represented by a
set of DEGs (for example, up- and downregulated genes by Pontin depletion, Oct4
depletion or linc1253 knockdown), we performed functional enrichment analysis
for the DEGs using DAVID Bioinformatics Resources V6.7 (ref. 40 and selected the
Gene Ontology Biological Process (GOBP) with P value o0.1 and gene count Z3
as the ones represented by the DEGs.

Comparisons of ES cell gene expression profiles. Previously reported gene
expression profiles of Oct4, Nanog, Tip60, p400 or Dnmt1-depleted ES cells10,57,59

were used to evaluate the similarity in the effects of depletion of these factors in ES

cells. For Agilent microarray data (GSE11243), we normalized probe intensities
using the quantile normalization method. For Affymetrix microarray data
(GSE4189 and GSE10519), we normalized probeset intensities using the GC-RMA
method67. Using the normalized data, we computed log2-fold-changes in ES cells
deficient of individual factors, compared with wild-type ES cells, and then
performed pair-wise correlation analysis of the log2-fold-changes for individual
factors. Finally, the resulting Pearson correlation coefficients were subjected to
hierarchical clustering to evaluate the similarity in the effects of depletion of
individual factors.

Genomic binding correlation analysis. We downloaded ChIP-sequencing data
(BED files) of Oct4, Sox2, Nanog (GSE11431), Tip60 and p400 (GSE42329) from
the GEO database. Using these data and our ChIP-sequencing data of Pontin, for
each protein-coding gene (ENSEMBL NCBIM37), we evaluated Pontin binding
enrichment ratio in its promoter region (2.5 kb-upstream and 500 b-downstream
from the TSS)68 as the ratio of the total read counts that were normalized by their
library size in the promoter region from Pontin- and GFP-IP (control) samples.
We then performed correlation analysis of Pontin enrichment ratios in the
promoter regions with enrichment ratios of the five factors (Oct4, Sox2, Nanog,
Tip60 and p400) as previously described69. In brief, we sorted 22,073 protein-
coding genes in a descending manner by their Pontin enrichment ratios, binned the
sorted genes such that each bin includes 500 genes, and then computed the mean
enrichment ratios of Pontin and the five factors for the genes in individual bins.

Identification of differentially expressed lincRNAs. To analyse the expression of
lincRNAs, we used the 226 multi-exonic lincRNAs that have been previously
identified in mouse ES cells18. The lincRNAs with log2-fold-changes 40.58
(1.5-fold) were identified as differentially expressed lincRNAs.

Assessment of protein coding probability of linc1253. We extracted the tran-
script sequences of protein coding genes and lincRNAs from ENSEMBL NCBIM37
database. Using the transcript sequences, we predicted the coding probabilities46

for total 3,099 lincRNAs and the same number of protein-coding genes randomly
selected from the database and then generated the distribution of the coding
probability. To predict the coding probability of linc1253, we used the transcript
sequence of linc1253.

Chromogenic RNA in situ hybridization. Detection of linc1253 lincRNA in
ES cells was performed using the RNAscope 2.0 Chromogenic Detection kit
(Advanced Cell Diagnostics) in accordance with the manufacturer’s instructions.
Briefly, ES cells were fixed in 4% paraformaldehyde/PBS for 30 min and pretreated
with 70% EtOH for 24 h. Fixed cells were hybridized with linc1253-specific probe
designed from Advanced Cell Diagnostics based on linc1253 sequence or negative
control probe (DapB). Nuclei were stained with DAPI. Chromogenic signals and
DAPI-stained images were detected with a Zeiss microscope

RNA Immunoprecipitation (RIP) assay. The RNA immunoprecipitation
protocol48 was adapted to analyse the interactions between Ezh2 and linc1253
lincRNA. ES cells were crosslinked by 1% formaldehyde for 10 min at room
temperature. The crosslinking reaction was stopped by addition of glycine
(1 M, pH 7.0) to a final concentration of 0.25 M followed by incubation at room
temperature for 5 min. The cells were washed with ice-cold PBS and resuspended
in RIPA buffer (50 mM Tris-HCl, pH 7.4, 1% NP40, 0.5% sodium deoxycholate,
0.05% SDS, 1 mM EDTA and 150 mM NaCl) containing protease inhibitors and an
RNase inhibitor. The cell suspension was sonicated and centrifuged for 10 min at
13,000 r.p.m., and the resulting supernatant was precleared by incubation with
protein A-agarose beads. The precleared supernatant was incubated with IgG,
anti-Ezh2, anti-Oct4 or anti-Pontin antibodies for 2 h at 4 �C. The beads were
washed with RIPA buffer and resuspended with reversal buffer (50 mM Tris-HCl,
pH 7.0, 5 mM EDTA, 10 mM DTT and 1% SDS) followed by incubation for 45 min
at 70 �C to reverse the crosslinks. The immunoprecipitated RNAs were isolated
according to the manufacturer’s protocol (Invitrogen).

Reprogramming. Reprogramming assay was done as previously described70.
In brief, equal amounts of virus encoding different combination of factors were
applied to 5� 104 plated Oct4-GFP transgenic MEFs. Oct4-GFP transgenic MEFs
were reprogrammed by forced expression of retroviral Oct4, Sox2, and Klf4 (OSK).
After 24 h, inactivated feeder cells were added and the culture was then maintained
for up to 21 days. Reprogrammed cells were detected by GFP expression. The
number of GFP-positive colonies was counted.

Human Othologue of linc1253. We first blasted the linc1253 gene sequence to the
human genome and found a region to which two partial portions of the linc1253
sequence were mapped. Second, since the blast analysis provided only the partial
mapping of linc1253, near the partially mapped regions, we further identified other
nine regions that share high sequence homologies with the linc1253 sequence using
UCSC genome browser. Thus, a potential linc1253 location was identified as a
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region containing all the regions identified from both the blast and UCSC genome
browser. Finally, mRNA-sequencing data (GSE16256) of human ES cells (H1 and
H9 cells) revealed that no transcripts within this region were expressed.

Statistical analysis. Statistical differences in test and control samples were
determined by Student’s t-test using the Statview package (Abacus Concepts,
Berkeley, CA).
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