
Direct observation of spin-polarised bulk bands in

an inversion-symmetric semiconductor

J. M. Riley,1 F. Mazzola,2 M. Dendzik,3 M. Michiardi,3 T. Takayama,4, 5

L. Bawden,1 C. Granerød,2 M. Leandersson,6 T. Balasubramanian,6

M. Hoesch,7 T. K. Kim,7 H. Takagi,4, 5 W. Meevasana,8, 9

Ph. Hofmann,3 M. S. Bahramy,10, 11 J. W. Wells,2 and P. D. C. King1, ∗

1SUPA, School of Physics and Astronomy, University of St. Andrews,

St. Andrews, Fife KY16 9SS, United Kingdom

2Department of Physics, Norwegian University of Science

and Technology (NTNU), N-7491 Trondheim, Norway

3Department of Physics and Astronomy,

Interdisciplinary Nanoscience Center (iNANO),

Aarhus University, 8000 Aarhus C, Denmark

4Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033

5Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany

6MAX IV Laboratory, Lund University,

P. O. Box 118, 221 00 Lund, Sweden

7Diamond Light Source, Harwell Campus,

Didcot, OX11 0DE, United Kingdom

8School of Physics, Suranaree University of Technology,

Nakhon Ratchasima, 30000, Thailand

9NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials,

Suranaree University of Technology,

Nakhon Ratchasima 30000, Thailand

10Quantum-Phase Electronics Center and Department of Applied Physics,

The University of Tokyo, Tokyo 113-8656, Japan

11RIKEN center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

(Dated: August 8, 2014)

1



Methods to generate spin-polarised electronic states in non-magnetic solids

are strongly desired to enable all-electrical manipulation of electron spins for

new quantum devices.1 This is generally accepted to require breaking global

structural inversion symmetry.1–5 In contrast, here we report the observation

from spin- and angle-resolved photoemission spectroscopy of spin-polarised bulk

states in the centrosymmetric transition-metal dichalcogenide WSe2. Mediated

by a lack of inversion symmetry in constituent structural units of the bulk crystal

where the electronic states are localised,6 we show how enormous spin splittings

up to ∼0.5 eV result, with a spin texture that is strongly modulated in both real

and momentum space. Through this, our study provides direct experimental

evidence for a putative locking of the spin with the layer and valley pseudospins

in transition-metal dichalcogenides,7,8 of key importance for using these com-

pounds in proposed valleytronic devices.

The powerful combination of inversion symmetry [E(k, ↑) = E(−k, ↑)] with time-reversal

symmetry [E(k, ↑) = E(−k, ↓)] ensures that electronic states of non-magnetic centrosym-

metric materials must be doubly spin-degenerate. If inversion symmetry is broken, however,

relativistic spin-orbit interactions can induce a momentum-dependent spin splitting via an

effective magnetic field imposed by spatially-varying potentials. If the resulting spin po-

larisations can be controllably created and manipulated, they hold enormous promise to

enable a range of new quantum technologies. These include routes towards electrical control

of spin precession for spin-based electronics,1,9 new ways to engineer topological states10,11

and possible hosts of Majorana fermions for use in quantum computation.5 There are two

generally-accepted methods for stabilising spin-polarised states without magnetism, both

exploiting breaking of global inversion symmetry. Structural inversion asymmetry can be

created in a centrosymmetric host by imposing an electrostatic potential gradient, for ex-

ample within an asymmetric quantum well, leading to Rashba-split12 states localised at

surfaces or interfaces.13–16 Alternatively, a lack of global inversion symmetry in the unit cell

can mediate spin splitting of the bulk electronic states, either through a Dresselhaus-type

interaction,17 or a recently discovered bulk form of the Rashba effect.4,18

Here, we present direct experimental evidence that 2H-WSe2, a material which retains

bulk inversion symmetry, nonetheless exhibits a large spin polarisation of its bulk electronic

states. This layered compound is composed of stacked Se-W-Se planes (Fig. 1(a)), each
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of which contains an in-plane net dipole moment which is proposed to lead to a strong

spin-valley coupling for an isolated monolayer.19–21 The bulk unit cell contains two such

monolayers, stacked in a staggered ‘AB’ configuration, restoring inversion symmetry and

necessitating spin degeneracy of the bulk electronic states. Nevertheless, combining spin- and

angle-resolved photoemission spectroscopy (ARPES) with electronic structure calculations,

we observe a large layer- and momentum-dependent spin polarisation of these bulk bands.

We first summarise the bulk electronic structure of WSe2 (Fig. 1). The material is

known to be a semiconductor, consistent with our experimental observations where we find

the Fermi level located within the band gap. We find the band extrema of the valence

bands at Γ and K to be almost degenerate,22 but here can resolve that the valence band

maximum is located at the bulk Γ point, with significant dispersion of these zone-centre

states along the surface normal (kz) direction (Fig. 1(c,e)). Our measured band dispersions

are in excellent agreement with those calculated from density-functional theory (DFT) (see

also Supplementary Fig. S1), confirming that we are probing the bulk electronic states of

WSe2. The broad total bandwidth of more than 4 eV of the cosine-like upper valence bands

along Γ − A reflects the spatially extended nature of W 5d and Se 5p orbitals from which

these states predominantly derive.

As well as these dispersive states we find a series of quasi-2D states, predominantly of

planar dx2−y2 , dxy, and px/y orbital character (see Fig. 4(e)). The small overlap of these

orbitals along the z direction, combined with suppressed interlayer hopping due to spin-

orbit coupling,7 results in minimal dispersion along kz, while their extended nature in-plane

ensures significant dispersion throughout the surface Brillouin zone (Fig. 1(d)). The lowest

binding energy 2D states form a pair of hole-like bands centred at the Brillouin zone corners,

contributing concentric almost circular pockets near the band top. These become trigonally

warped as they grow in size with increasing binding energy, eventually merging with the zone-

centre bands to form bone-shaped pockets centred atM . The large splitting of∼0.5 eV of the

top of these bands at K signifies the strong atomic spin-orbit interaction in this compound,

which is further reflected by our observation of hybridisation gaps, for example between two-

and three-dimensional states along the Γ−A line (Fig. 1(e)). Despite such strong spin-orbit

coupling, we stress that all states remain spin-degenerate in our calculations, as expected

from the bulk inversion symmetry of the crystal.

Intriguingly, however, our spin-resolved photoemission measurements reveal a strong spin
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polarisation of the upper pair of valence band states at the K point of the Brillouin zone

(Fig. 2). The measured polarisation is entirely out of the surface plane within experimental

error, with up (down) orientation for the upper (lower) valence band, respectively. From

fitting the measured energy distribution curves (EDCs, see methods), we estimate the mag-

nitude of the spin polarisation to exceed 90%, suggestive of an almost fully spin-polarised

band. Moreover, the sign of all polarisations are reversed at the K ′ = −K point, confirming

that time-reversal symmetry remains unbroken, and thus there is no net magnetic moment.

This points to a non-magnetic origin of the observed spin polarisation, seemingly at odds

with the centrosymmetric nature of the bulk crystal structure (Fig. 1(a)). We attribute

this to the local inversion asymmetry of individual WSe2 layers, leading to spin-polarised

states whose texture is strongly modulated in both real and momentum space despite the

global inversion symmetry of the unit cell. For these quasi-two-dimensional bands around

K, our calculations reveal that the electronic wavefunctions are almost completely localised

on individual Se-W-Se layers of the bulk crystal. This is consistent with a spin-orbit me-

diated suppression of interlayer hopping predicted at the K point for bilayer WSe2, which

was proposed to lead to a strong coupling of the real spin with the layer pseudospin.7 Such

spin-layer locking was subsequently attributed as the origin of characteristic circularly and

linearly polarised photoluminescence from bilayer WSe2.8

As in the bilayer, with the electronic wavefunctions localised on a single Se-W-Se layer

(half of the unit cell) of the bulk crystal around K, the D6h symmetry of the crystal is

effectively reduced to D3h, allowing a net dipole moment within the ab-plane (Fig. 1(a)). A

recent theory has established the general grounds by which such a lack of inversion symmetry

of the crystal site point group can lead to a macroscopic spin polarisation, driven by the

local nature of spin-orbit coupling.6 Indeed, our calculated bulk wavefunctions projected onto

either WSe2 layer of the unit cell are almost fully spin polarised for the topmost two valence

bands at K (Fig. 2(g)). The 180◦ rotation of neighbouring layers in AB-stacked WSe2,

however, ensures that the sign of the spin polarisation is opposite between adjacent layers

(Fig. 2(h)). This leads to a strong spin-layer locking,7,8 with an overall spin degeneracy of

the bulk electronic structure as required for a centrosymmetric material. Photoemission,

being extremely surface sensitive, can be expected to predominantly probe the top layer of

this material. We thus attribute the strong measured spin polarisation we observe here as a

direct observation of a layer-localised spin-polarisation of bulk electronic states in WSe2.
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This is further supported by our photon-energy dependent measurements (Fig. 2(i)),

which show how the measured photoelectron spin polarisation at K can be tuned nearly

to zero. Our model calculations (see also Supplementary Fig. S3 and associated discus-

sion) show how this arises due to the interference23,24 of spin-up and spin-down polarised

photoelectrons emitted from different layers of the material. This strongly supports our

conclusions of a huge momentum-dependent spin splitting of up to ∼0.5 eV for bulk states

localised in a constituent layer of the unit cell in WSe2, with a spin orientation that is

directly tied to the layer pseudospin. We note that the size of this observed spin splitting

dramatically exceeds spin-orbit mediated splittings typically observed to date, even in sur-

face Rashba systems with strong local in-plane field gradients.14,25 This is because here, the

energy of the spin splitting at the band extrema is directly set by the atomic spin-orbit

coupling strength.7

Figure 3 reveals how the underlying spin-polarised states evolve along the K − Γ − K ′

direction. We find a dramatic suppression of the out-of-plane spin polarisation approximately

half way along this line, with negligible polarisation observed around the zone centre. This is

reproduced by our ab-initio calculations (Fig. 4(a)), and can be understood considering the

orbital character of the underlying states (Fig. 4(e)). Close to K, the electronic states are

derived from mostly dxy and dx2−y2 orbitals. There is thus significant orbital overlap within

the surface plane which, together with the net in-plane dipole, favours strong out-of-plane

spin polarisation.26 Around Γ, however, the orbital character becomes dominantly dz2/pz-

like, causing this component to be strongly suppressed, as found experimentally, while also

driving the observed increase in dimensionality of the electronic states. Intriguingly, we also

find a small in-plane spin component emerges along K ′ − Γ−K, which again switches sign

either side of Γ. This component would not naively be expected given the symmetry of

the Se-W-Se layer, which has no net dipolar field along the out-of-plane direction, which

we have confirmed by explicit slab calculations for an ideal bulk-like termination. The

emergence of this component therefore reflects additional complexity beyond that considered

in our theoretical approach, such as small surface relaxations leading to a non-negligible

contribution of the dipole out of the surface plane. We stress, however, that this has only a

small effect and the predominant contribution to the strong out-of-plane spin polarisations

observed here are intrinsic to the bulk electric structure.

We additionally find a suppression of this out-of-plane spin polarisation along the entire
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M − Γ direction. Unlike at the zone centre, however, this cannot be attributed to a change

in orbital character: The electronic states close to M are predominantly derived from planar

orbitals, similar to aroundK, and we accordingly find strong layer-resolved spin polarisations

of the underlying bands close to M (Fig. 4). Rather, the suppression of spin polarisation

along M−Γ is mediated by the degeneracy of two oppositely polarised bands within a single

layer. At the M point itself, this is a natural consequence of time-reversal symmetry, as

M is a time-reversal invariant momentum. Along the M − Γ line, such degeneracies are

enforced by the combination of time-reversal with the rotational D3h symmetry of a single

monolayer within the unit cell, ensuring that the out-of-plane component of the spin must

have opposite sign in neighbouring sextants of the Brillouin zone.

Together, our calculations and experiment thus point to an extremely rich real- and

momentum-space dependent spin texture of bulk transition-metal dichalcogenides. They

provide a direct demonstration of a pronounced coupling between the spin, valley, and layer

degrees of freedom, of key importance to widespread proposals to utilise these materials in

exotic devices exploiting the valley pseudospin.7,8,19–21,27–29 More generally, our experimental

measurement of spin-polarised bulk electronic states in a centrosymmetric material opens a

wealth of new opportunities for creating, probing, and controlling spin and valley polarisation

in bulk solids via local inversion asymmetry.

Methods

ARPES: ARPES measurements were performed at the I05 beamline of Diamond Light Source,

UK, and spin-ARPES measurements at the I3 beamline of MAX-III synchrotron, Sweden.30 Single

crystal samples of WSe2, grown by the chemical vapour transport method, were cleaved in-situ and

measured at temperatures ranging from 30-300 K. Measurements were performed using p-polarised

synchrotron light from 20-130 eV (ARPES) and 20-40 eV (spin-ARPES), and employing Scienta

R4000 hemispherical electron analysers. For the spin-ARPES measurements, a mini-Mott detector

scheme was utilised, permitting simultaneous detection of the out-of-plane and one in-plane (along

the analyser slit direction) component of the photoelectron spin.30 A Sherman function of S = 0.17

was used to generate the measured spin polarisations,30

Pi =
(I+i − I−i )

S(I+i + I−i )
,

where Pi is the photoelectron spin polarisation measured along the out-of-plane, i =⊥, or in-

plane, i =∥, direction, and I±i is the measured intensity on the individual detectors in the Mott
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scattering chamber, corrected by a relative detector efficiency calibration. To extract numerical

values of the polarisation, we fitted the measured EDCs to two Lorentzian peaks and a Shirley

background, convolved with a Gaussian function to account for the instrumental resolution, with

the corresponding Lorentzian peak areas used to derive the measured spin polarisation. We also

applied a geometrical correction to account for the finite angle between the sample and the electron

spectrometer, and the corresponding influence of this on the spin polarisation measured in the

reference frame of the spectrometer. To determine the kz dispersion from photon-energy dependent

ARPES, we employed a free electron final state model

kz =
√

2me/!2(V0 + Ek cos
2 θ)1/2,

where θ is the in-plane emission angle and V0 is the inner potential. Our photon energy range

covers more than 6 complete Brillouin zones along kz, and we find best agreement taking an inner

potential of 13 eV and a c-axis lattice constant of 13.45 Å.

Calculations: Electronic structure calculations were performed within the context of density func-

tional theory (DFT) using the modified Becke-Johnson exchange potential and Perdew-Burke-

Ernzerhof correlation functional as implemented in the WIEN2K programme.31 Relativistic effects,

including spin-orbit coupling, were fully included. The Brillouin zone was sampled by a 12x12x6

k-mesh. For the orbital and layer projection calculation, a tight binding Hamiltonian for the bulk

band structure was constructed by downfolding the DFT results using maximally localised Wannier

functions,32–34 employing as a basis W 5d and 5s orbitals and Se 5p and 5s orbitals.
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Figure Captions:

FIG. 1: Bulk electronic structure of WSe2. (a) Side and top views of the bulk crystal structure

of WSe2. The unit cell contains two Se-W-Se units in which there is a net in-plane dipole pointing

to the right and left, respectively. (b) Corresponding bulk and surface Brillouin zone. ARPES

measurements (hν = 125 eV, T = 30 K) of (c) the electronic structure along the K ′ − Γ − K

direction and (d) isoenergy contours throughout the surface Brillouin zone, reveal sharply-defined

bands (for example the upper valence bands at K) with significant in-plane dispersion, indica-

tive of two-dimensional electronic states. We also observe broader “filled-in” pockets of spectral

weight characteristic of three-dimensional states, where the finite kz resolution of ARPES leads

to broadening. (e) We directly confirm this absence or presence, respectively, of significant kz

dispersion from photon energy-dependent ARPES measurements (see also methods and Supple-

mentary Fig. S1). Our measured electronic structure is in excellent agreement with that calculated

from density-functional theory (solid lines in (c) and (e)), confirming that we are probing the bulk

electronic states of WSe2.
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FIG. 2: Observation of spin-polarised bulk bands in an inversion symmetric host. En-

ergy distribution curves from spin-resolved ARPES measurements (hν = 25 eV, T = 300 K) at the

K point measured by the (a) out-of-plane (I⊥) and (b) in-plane (I∥) detectors in the Mott scat-

tering chamber (corresponding measurements correcting for the finite Mott-detector efficiencies

are shown in Supplemental Fig. S2). (c) The extracted polarisations show a strong out-of-plane

spin polarisation, opposite for the two valence band peaks. (d-f) The signs of all components are

reversed at the K ′ point. (g) Our projection of the calculated bulk band structure onto the first

layer of the unit cell reveals a strong spin polarisation of electronic bands localised on this layer

(e.g. at K), whose sign is reversed in the second layer of the unit cell as shown in (h). The mea-

sured spin polarisation at K exhibits a strong photon energy dependence (i). Error bars reflect

an approximate estimate of the uncertainty in extracting the polarisation from the experimental

measurements, incorporating statistical errors in peak fitting, systematic errors and uncertainty

in sample alignment. Our model calculations (solid line, see Supplementary Information), reveal

how this occurs due to interference between outgoing photoelectrons originating from the different

layers of the crystal.

FIG. 3: Evolution of spin texture along K ′−Γ−K. (a) Dispersion measured by ARPES (hν =

125 eV, T = 30 K), along the K ′ −Γ−K direction. Vertical lines mark the locations of the EDCs

measured using spin-resolved photoemission (hν = 25 eV, T = 300 K), and corresponding extracted

spin polarisations, shown in (b)–(e). (f) The out-of- (P⊥) and in- (P∥) plane spin polarisations

determined from fitting these and additional EDCs (hν = 25 eV, T = 80 K [squares and vertical

diamonds, respectively] and T = 300 K [circles and horizontal diamonds, respectively]) reveal some

canting of the spin into the surface plane away from the K points, and a total suppression of the

measured spin polarisation around the zone centre. Error bars reflect an approximate estimate of

the uncertainty in extracting the polarisation from the experimental measurements, incorporating

statistical errors in peak fitting, systematic errors and uncertainty in sample alignment. The lines

in (f) are provided as guides to the eye.
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FIG. 4: Momentum-dependent suppression of layer-resolved spin polarisation. (a)

Momentum-dependence of the out-of-plane spin polarisation of the top two valence bands through-

out the Brillouin zone, calculated for the kz = 0 plane and projected onto the first Se-W-Se layer of

the unit cell. White regions indicate suppression of the layer-resolved spin-polarisation. At the M

point, our (b) ARPES measurements (hν = 125 eV, T = 30 K) and corresponding spin polarisation

determined from spin-ARPES (hν = 25 eV, T = 300 K) along the coloured (c) MDC and (d) EDC

show how this occurs through the crossing of strongly spin-polarised bands. In contrast, towards

the zone centre, our orbitally-projected band structure calculations (e) reveal how this is correlated

with the emergence of significant out-of-plane orbital character of the electronic states.
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FIG. S1: kz dependence of bulk electronic structure of WSe2. (a) ARPES measurements

of the kz dispersion of electronic states at the Γ, K, and M points, respectively. The features

which appear to form sharp diagonal lines are an experimental artefact arising from higher-order

light. (b) Our ab-initio calculations are additionally included (red lines), showing good agreement

with the measured dispersions. (c) The calculated electronic structure, shown projected onto

the surface Brillouin zone for different values of kz (coloured lines), indicates significant in-plane

dispersion of all states, with the presence (absence) of substantial kz dispersion for the different

bands, characteristic of their three (two-) dimensional character, respectively.
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FIG. S2: Spin-resolved EDCs. (a) Dispersion measured by ARPES (hν = 125 eV, T = 30 K),

along the K ′−Γ−K direction. (b-g) Spin-resolved EDCs (hν = 25 eV, T = 300 K, measured along

the red cuts in (a)), accounting for the finite efficiency of the spin detection (Sherman function of

the Mott detectors). Here, I↑i = Itoti (1+P )/2 and I↓i = Itoti (1−P )/2, with Itoti = (I+I + I−i ), I±i as

shown in the main text, i = {⊥, ∥}, and the polarisation Pi shown in the bottom row, calculated

as defined in the methods section.
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2-LAYER MODEL FOR PHOTOELECTRON SPIN POLARISATION

To simulate the photon energy dependence of the measured spin polarisation by spin-

resolved ARPES, shown in Fig. 2(i) of the main text, we start with a minimal model for the

electronic structure of the upper valence band at K, as used in Ref. 1:

|VB1⟩ =
cosα√

2

[(∣∣dℓx2−y2
〉
+ i

∣∣dℓxy
〉)

⊗ |↑⟩+
(∣∣dux2−y2

〉
− i

∣∣duxy
〉)

⊗ |↓⟩
]

+
sinα√

2

[(∣∣dux2−y2
〉
− i

∣∣duxy
〉)

⊗ |↑⟩+
(∣∣dℓx2−y2

〉
+ i

∣∣dℓxy
〉)

⊗ |↓⟩
]

(S1)

=
∑

i,σ

cσi φi,σ, (S2)

where i = u, ℓ is the layer index for the upper and lower layer in the unit cell, respectively,

and σ the spin index with

c↑u =
sinα√

2
= c↓ℓ

c↓u =
cosα√

2
= c↑ℓ

φu,↑↓ =
∣∣dux2−y2

〉
− i

∣∣duxy
〉

φℓ,↑↓ =
∣∣dℓx2−y2

〉
+ i

∣∣dℓxy
〉
. (S3)

We take cos(2α) = 0.9 such that each layer is 90% spin polarised. We proceed to calculate

the photoelectron spin polarisation following the method introduced in Refs. 2 and 3. We

write the matrix element for photoemission, assuming plane wave final states, as

MVB1 =
〈
eik·r

∣∣A · p |VB1⟩ =
∑

i,σ

cσi mi, (S4)

where

mi =
〈
eik·r

∣∣A · p |φi⟩

= e−ikzzie−zi/(2λ cos θ)
〈
eik∥·r∥

∣∣A · p |φi⟩ , (S5)

explicitly incorporating the effects of a layer-dependent phase and exponential attenuation

of photoelectrons emitted from deeper atomic layers in the crystal, taking

kz =

√
2me

!2 (hν − EB)− k2
∥, (S6)

θ as the photoelectron emission angle for the K point, λ the inelastic mean free path, and

zi the layer spacing of W planes along the c-axis.
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From the Pauli spin matrix

σz =
!
2

⎛

⎝ 1 0

0 −1

⎞

⎠ , (S7)

the z-component of the photoelectron spin polarisation is given by

Pz =
I↑ − I↓

I↑ + I↓
(S8)

where

Iσ =

∣∣∣∣∣
∑

i

cσi mi

∣∣∣∣∣

2

. (S9)

Substituting Eqn. S9 into Eqn. S8, we get

Pz =

∑
i

(
c↑i

∗
c↑i − c↓i

∗
c↓i

)
|mi|2 +

∑
i ̸=i′

(
c↑i

∗
c↑i′ − c↓i

∗
c↓i′
)
m∗

imi′

∑
i

(
c↑i

∗
c↑i + c↓i

∗
c↓i

)
|mi|2 +

∑
i ̸=i′

(
c↑i

∗
c↑i′ + c↓i

∗
c↓i′
)
m∗

imi′

, (S10)

where the latter terms give rise to interference between the layers. Taking only two layers,

substituting Eqn. S3 and assuming
〈
eik∥·r∥

∣∣A·p |φu⟩ =
〈
eik∥·r∥

∣∣A·p |φℓ⟩, Eqn. S10 simplifies

to

Pz =

(
sin2 α− cos2 α

) (
1− e−c/2λ cos θ

)

1 + e−c/2λ cos θ + 4 sinα cosα cos
(
kzc
2

)
e−c/4λ cos θ

. (S11)

An oscillatory dependence of the measured photoelectron spin polarisation on photon energy

is clearly apparent from the cos
(
kzc
2

)
term, qualitatively supporting our assignment of the

decrease of the measured photoelectron spin polarisation at photon energies around 35 eV

(Fig. 2(i) of the main text) to an interference effect.

To further validate this conclusion, we numerically solve Eqn. S10 for a 20-layer bulk-like

model, taking inelastic mean free paths as calculated from the TPP-2M predictive for-

mula [4], although we note that we find similar results for fixed inelastic mean free paths on

the order of 5 Å, and assuming a photon energy dependence of
〈
eik∥·r∥

∣∣A ·p |φi⟩ given by the

W 5d photoionisation cross section as calculated by Yeh and Lindau [5]. The calculated spin

polarisation is in good agreement with our measured photon energy-dependent spin polar-

isations (Fig. 2(i)). It validates our measurement of high photoelectron spin polarisations,

confirming that we can selectively probe the top monolayer of the material, and that we

can tune these by changing photon energy. The photon energy dependence of the calculated

total intensity (Fig. S3) also well matches the variation in spectral weight of these bands

from spin-integrated ARPES over an extended photon energy range. Together, these model
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FIG. S3: Photon energy dependence of spectral weight. (a) Calculated (black line) total

intensity predicted by the model described here, compared to the measured spectral weight of the

upper valence band at the K point from spin-integrated ARPES (green points).

calculations and corresponding photon-energy dependent experimental measurements there-

fore strongly support our conclusions in the main text of an alternating layer-dependent spin

texture in WSe2 for a given valley index.
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