2,611 research outputs found
Geologic analysis of ERTS-1 imagery for the State of New Mexico
There are no author-identified significant results in this report
Measured unsteady transonic aerodynamic characteristics of an elastic supercritical wing with an oscillating control surface
Transonic steady and unsteady aerodynamic data were measured on a large elastic wing in the NASA Langley Transonic Dynamics Tunnel. The wing had a supercritical airfoil shape and a leading-edge sweepback of 28.8 deg. The wing was heavily instrumented to measure both static and dynamic pressures and deflections. A hydraulically driven outboard control surface was oscillated to generate unsteady airloads on the wing. Representative results from the wind tunnel tests are presented and discussed, and the unexpected occurrence of an unusual dynamic wing instability, which was sensitive to angle of attack, is reported
Wetland succession in a permafrost collapse: interactions between fire and thermokarst
To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a <i>Sphagnum</i>-dominated peatland in approximately 1970. The shift from sedge to <i>Sphagnum</i>, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and <i>Sphagnum</i>, and potentially decrease the long-term ecosystem carbon storage
Breaking the Redshift Deadlock - I: Constraining the star formation history of galaxies with sub-millimetre photometric redshifts
Future extragalactic sub-millimetre and millimetre surveys have the potential
to provide a sensitive census of the level of obscured star formation in
galaxies at all redshifts. While in general there is good agreement between the
source counts from existing SCUBA (850um) and MAMBO (1.25mm) surveys of
different depths and areas, it remains difficult to determine the redshift
distribution and bolometric luminosities of the sub-millimetre and millimetre
galaxy population. This is principally due to the ambiguity in identifying an
individual sub-millimetre source with its optical, IR or radio counterpart
which, in turn, prevents a confident measurement of the spectroscopic redshift.
Additionally, the lack of data measuring the rest-frame FIR spectral peak of
the sub-millimetre galaxies gives rise to poor constraints on their rest-frame
FIR luminosities and star formation rates. In this paper we describe
Monte-Carlo simulations of ground-based, balloon-borne and satellite
sub-millimetre surveys that demonstrate how the rest-frame FIR-sub-millimetre
spectral energy distributions (250-850um) can be used to derive photometric
redshifts with an r.m.s accuracy of +/- 0.4 over the range 0 < z < 6. This
opportunity to break the redshift deadlock will provide an estimate of the
global star formation history for luminous optically-obscured galaxies [L(FIR)
> 3 x 10^12 Lsun] with an accuracy of 20 per cent.Comment: 14 pages, 22 figures, submitted to MNRAS, replaced with accepted
versio
Diminished temperature and vegetation seasonality over northern high latitudes
Global temperature is increasing, especially over northern lands (>50°âN), owing to positive feedbacks1. As this increase is most pronounced in winter, temperature seasonality (ST)âconventionally defined as the difference between summer and winter temperaturesâis diminishing over time2, a phenomenon that is analogous to its equatorward decline at an annual scale. The initiation, termination and performance of vegetation photosynthetic activity are tied to threshold temperatures3. Trends in the timing of these thresholds and cumulative temperatures above them may alter vegetation productivity, or modify vegetation seasonality (SV), over time. The relationship between ST and SV is critically examined here with newly improved ground and satellite data sets. The observed diminishment of ST and SV is equivalent to 4° and 7° (5° and 6°) latitudinal shift equatorward during the past 30 years in the Arctic (boreal) region. Analysis of simulations from 17 state-of-the-art climate models4 indicates an additional STdiminishment equivalent to a 20° equatorward shift could occur this century. How SV will change in response to such large projected ST declines and the impact this will have on ecosystem services5 are not well understood. Hence the need for continued monitoring6 of northern lands as their seasonal temperature profiles evolve to resemble thosefurther south.Lopullinen vertaisarvioitu kĂ€sikirjoitu
Arctic system on trajectory to new state
The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this âsuper interglacialâ state
SANEPIC: A Map-Making Method for Timestream Data From Large Arrays
We describe a map-making method which we have developed for the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST) experiment, but which should
have general application to data from other submillimeter arrays. Our method
uses a Maximum Likelihood based approach, with several approximations, which
allows images to be constructed using large amounts of data with fairly modest
computer memory and processing requirements. This new approach, Signal And
Noise Estimation Procedure Including Correlations (SANEPIC), builds upon
several previous methods, but focuses specifically on the regime where there is
a large number of detectors sampling the same map of the sky, and explicitly
allowing for the the possibility of strong correlations between the detector
timestreams. We provide real and simulated examples of how well this method
performs compared with more simplistic map-makers based on filtering. We
discuss two separate implementations of SANEPIC: a brute-force approach, in
which the inverse pixel-pixel covariance matrix is computed; and an iterative
approach, which is much more efficient for large maps. SANEPIC has been
successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related
results available at http://blastexperiment.info/ [the BLAST Webpage
A Sample of Intermediate-Mass Star-Forming Regions: Making Stars at Mass Column Densities <1 g/cm^2
In an effort to understand the factors that govern the transition from low-
to high-mass star formation, we identify for the first time a sample of
intermediate-mass star-forming regions (IM SFRs) where stars up to - but not
exceeding - 8 solar masses are being produced. We use IRAS colors and Spitzer
Space Telescope mid-IR images, in conjunction with millimeter continuum and CO
maps, to compile a sample of 50 IM SFRs in the inner Galaxy. These are likely
to be precursors to Herbig AeBe stars and their associated clusters of low-mass
stars. IM SFRs constitute embedded clusters at an early evolutionary stage akin
to compact HII regions, but they lack the massive ionizing central star(s). The
photodissociation regions that demarcate IM SFRs have typical diameters of ~1
pc and luminosities of ~10^4 solar luminosities, making them an order of
magnitude less luminous than (ultra)compact HII regions. IM SFRs coincide with
molecular clumps of mass ~10^3 solar masses which, in turn, lie within larger
molecular clouds spanning the lower end of the giant molecular cloud mass
range, 10^4-10^5 solar masses. The IR luminosity and associated molecular mass
of IM SFRs are correlated, consistent with the known luminosity-mass
relationship of compact HII regions. Peak mass column densities within IM SFRs
are ~0.1-0.5 g/cm^2, a factor of several lower than ultra-compact HII regions,
supporting the proposition that there is a threshold for massive star formation
at ~1 g/cm^2.Comment: 61 pages, 6 tables, 20 figures. Accepted for publication in the
Astronomical Journa
BLAST Observations of the South Ecliptic Pole field: Number Counts and Source Catalogs
We present results from a survey carried out by the Balloon-borne Large
Aperture Submillimeter Telescope (BLAST) on a 9 deg^2 field near the South
Ecliptic Pole at 250, 350 and 500 {\mu}m. The median 1{\sigma} depths of the
maps are 36.0, 26.4 and 18.4 mJy, respectively. We apply a statistical method
to estimate submillimeter galaxy number counts and find that they are in
agreement with other measurements made with the same instrument and with the
more recent results from Herschel/SPIRE. Thanks to the large field observed,
the new measurements give additional constraints on the bright end of the
counts. We identify 132, 89 and 61 sources with S/N>4 at 250, 350, 500 {\mu}m,
respectively and provide a multi-wavelength combined catalog of 232 sources
with a significance >4{\sigma} in at least one BLAST band. The new BLAST maps
and catalogs are available publicly at http://blastexperiment.info.Comment: 25 pages, 6 figures, 4 tables, Accepted by ApJS. Maps and catalogs
available at http://blastexperiment.info
BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths
We report multi-wavelength power spectra of diffuse Galactic dust emission
from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields
in Cygnus X and Aquila. These submillimeter power spectra statistically
quantify the self-similar structure observable over a broad range of scales and
can be used to assess the cirrus noise which limits the detection of faint
point sources. The advent of submillimeter surveys with the Herschel Space
Observatory makes the wavelength dependence a matter of interest. We show that
the observed relative amplitudes of the power spectra can be related through a
spectral energy distribution (SED). Fitting a simple modified black body to
this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in
the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new
insight into the substantial cirrus noise that will be encountered in
forthcoming observations.Comment: Submitted to the Astrophysical Journal. Maps and other data are
available at http://blastexperiment.info
- âŠ