178 research outputs found

    Field- and pressure-induced phases in Sr4_{4}Ru3_{3}O10_{10}: A spectroscopic investigation

    Full text link
    We have investigated the magnetic-field- and pressure-induced structural and magnetic phases of the triple-layer ruthenate - Sr4_{4}Ru3_{3}O10_{10}. Magnetic-field-induced changes in the phonon spectra reveal dramatic spin-reorientation transitions and strong magneto-elastic coupling in this material. Additionally, pressure-dependent Raman measurements at different temperatures reveal an anomalous negative Gruneisen-parameter associated with the B1g_{1g} mode (\sim 380 cm1^{-1}) at low temperatures (T << 75K), which can be explained consistently with the field dependent Raman data.Comment: 5 pages, 4 figures final version published in PRL 96, 067004 (2006

    Raman scattering studies of temperature- and field-induced melting of charge order in (La,Pr,Ca)MnO3_{3}

    Full text link
    We present Raman scattering studies of the structural and magnetic phases that accompany temperature- and field-dependent melting of charge- and orbital-order (COO) in La0.5Ca0.5MnO3 and La0.25Pr0.375Ca0.375MnO3. Our results show that thermal and field-induced COO melting in La0.5Ca0.5MnO3 exhibits three stages in a heterogeneous melting process associated with a structural change: a long-range, strongly JT distorted/COO regime; a coexistence regime; and weakly JT distorted/PM or FM phase. We provide a complete structural phase diagram of La0.5Ca0.5MnO3 for the temperature and field ranges 6<=T<=170 K and 0<=H<=9 T. We also investigate thermal and field-induced melting in La0.25Pr0.375Ca0.375MnO3 to elucidate the role of disorder in melting of COO. We find that while thermal melting of COO in La0.25Pr0.375Ca0.375MnO3 is quite similar to that in La0.5Ca0.5MnO3, the field-induced transition from the COO phase to the weakly JT-distorted/FM phase in La0.25Pr0.375Ca0.375MnO3 is very abrupt, and occurs at significantly lower fields (H~2 T at T~0 K) than in La0.5Ca0.5MnO3 (H~30 T at T=0 K). Moreover, the critical field H_c increases with increasing temperature in La0.25Pr0.375Ca0.375MnO3 in contrast to La0.5Ca0.5MnO3. To explain these differences, we propose that field-induced melting of COO in La0.25Pr0.375Ca0.375MnO3 is best described as the field-induced percolation of FM domains, and we suggest that Griffiths phase physics may be an appropriate theoretical model for describing the unusual temperature- and field- dependent transitions observed in La0.25Pr0.375Ca0.375MnO3.Comment: 14 pages, 8 figures, to be published in PR

    Gapped Excitations in the High-Pressure Antiferromagnetic Phase of URu2_2Si2_2

    Full text link
    We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu2_2Si2_2. We find qualitatively similar excitations throughout the (H0L) scattering plane in the hidden order and large moment phases, with no changes in the ω\hbar\omega-widths of the excitations at the Σ\Sigma = (1.407,0,0) and ZZ = (1,0,0) points, within our experimental resolution. There is, however, an increase in the gap at the Σ\Sigma point from 4.2(2) meV to 5.5(3) meV, consistent with other indicators of enhanced antiferromagnetism under pressure.Comment: 5 pages, 3 figures, 1 tabl

    Relative Pose from Deep Learned Depth and a Single Affine Correspondence

    Get PDF
    We propose a new approach for combining deep-learned non-metric monocular depth with affine correspondences (ACs) to estimate the relative pose of two calibrated cameras from a single correspondence. Considering the depth information and affine features, two new constraints on the camera pose are derived. The proposed solver is usable within 1-point RANSAC approaches. Thus, the processing time of the robust estimation is linear in the number of correspondences and, therefore, orders of magnitude faster than by using traditional approaches. The proposed 1AC+D solver is tested both on synthetic data and on 110395 publicly available real image pairs where we used an off-the-shelf monocular depth network to provide up-to-scale depth per pixel. The proposed 1AC+D leads to similar accuracy as traditional approaches while being significantly faster. When solving large-scale problems, e.g., pose-graph initialization for Structure-from-Motion (SfM) pipelines, the overhead of obtaining ACs and monocular depth is negligible compared to the speed-up gained in the pairwise geometric verification, i.e., relative pose estimation. This is demonstrated on scenes from the 1DSfM dataset using a state-of-the-art global SfM algorithm. Source code: https://github.com/eivan/one-ac-pos

    Radio Astronomy

    Get PDF
    Contains reports on four research projects.Joint Services Electronics Program (Contract DAAB07-71-C-0300)California Institute of Technology (Contract 952568)National Aeronautics and Space Administration (Contract NAS1-10693)National Science Foundation (Grant GP-21348A#2
    corecore