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Water vapor in the tropical lower stratosphere during the driest 
phase of the atmospheric "tape recorder" 

H. L. Clark, A. Billingham, R. S. Harwood, and H. C. Pumphrey 
Department of Meteorology, University of Edinburgh, Edinburgh, Scotland, UK 

Abstract. Data from the Microwave Limb Sounder on the Upper Atmosphere Research 
Satellite are used to examine sequences of days during the driest phase of the atmospheric 
"tape recorder" signal in the lower stratosphere. It is found that the Indonesian region is 
the first place to become dry followed by the western Pacific and Panama. Eventually, dry 
air is found in a band along the equator with the most northerly extent over Indonesia and 
Panama. Two-dimensional trajectories show that winds cannot account for the spread of 
dry air from Indonesia and Panama across the entire tropics. The patterns are difficult to 
explain but may result from a combination of widespread ascent of air and the effects of 
deep convection. 

1. Introduction 

Water vapor in the stratosphere is a powerful tracer for at- 
mospheric motions and its study has important implications 
for our understanding of the transport within the stratosphere 
and for stratosphere-troposphere exchange (STE). There are 
many unresolved problems concerning the exchange of air 
between the troposphere and stratosphere and in explaining 
the dryness of the lower stratosphere. This is partly because 
measurements of water vapor in the lower stratosphere are 
difficult to obtain. In situ measurements from balloon and 

aircraft are limited in their spatial and temporal coverage. 
Satellites have been increasingly exploited to provide better 
data coverage in this region. In this paper we present results 
from the Microwave Limb Sounder (MLS) on the Upper 
Atmosphere Research Satellite (UARS). MLS offers daily 
measurements of water vapor in the tropical lower strato- 
sphere, and hence it allows us to construct daily maps and to 
follow synoptically the evolution of observed features. 

The methods by which air gets into the stratosphere from 
the troposphere and becomes dehydrated to values typical of 
the stratosphere are still uncertain. Brewer [1949] found the 
observed mixing ratios to be lower than the minimum satu- 
ration mixing ratio at the local tropopause. To account for 
this dryness, he proposed a circulation whereby air enters 
the stratosphere from the troposphere in the tropics, drifts 
poleward, and descends in the extratropics. The tropical 
tropopause, which is high and cold, acts as a "cold trap" to 
"freeze dry" the air as it rises through. 

The "extratropical pump" which acts nonlocally upon the 
tropical stratosphere [e.g. Eliassen, 1951; Dickenson, 1968] 
is responsible for large-scale ascent and mass transfer from 
the tropical upper troposphere to lower stratosphere. The 
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extratropical pump drives tropical temperatures below ra- 
diative equilibrium and produces an annual cycle in tropical 
temperatures near the 100 hPa level, with lowest tempera- 
tures during northern winter and highest temperatures dur- 
ing northern summer. A consequence of the annual cycle in 
tropopause temperatures is that mixing ratios of air that has 
entered the stratosphere from the tropical troposphere should 
also have an annual cycle, in phase with that of tropopause 
temperature. Satellite observations [Mote et al., 1995, 1996] 
indeed confirmed this. Layers of air retain this water va- 
por signal for up to 2 years, and this is known as the "tape 
recorder" effect [Mote et al., 1996]. 

In the zonal mean, however, the lowest tropopause tem- 
peratures are not low enough to explain the lowest mix- 
ing ratios in the stratosphere [Mote et al., 1996], a sce- 
nario which observations have long suggested and which 
led Newell and Gould-Stewart [1981] to define areas where 
the driest air could enter the stratosphere as being regions 
where the temperature was colder than average. They in- 
troduced the term "stratospheric fountain" and identified the 
most likely times and locations for the stratospheric fountain 
as being the western Pacific, northern Australia, Indonesia, 
and Malaysia from November to March, and over the Bay of 
Bengal and India during July and August, when the temper- 
atures are 190.6 K at 100 hPa, cold enough to dry the air to 
3 ppmv. 

An alternative mechanism whereby tropical convective 
systems could cool the stratosphere was proposed by 
Danielsen [1982]. Some convective events might be strong 
enough to overshoot the tropopause, mixing tropospheric air 
with stratospheric air and leading to the formation of a large 
cirrus anvil in the stratosphere. The sedimentation of the ice 
crystals from the top of the anvil acts to dehydrate the region, 
and thus tropospheric air is introduced to the stratosphere 
but results in dehydration. On the basis of model simula- 
tions, Potter and Holton [1995] suggested that convectively 
generated buoyancy waves could also induce vertical parcel 
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displacements which promote the formation of ice crystals in 
the lower stratosphere. Potter and Holton's mechanism, like 
Danielsen's, results in dehydration but does not require con- 
vection to penetrate the tropopause or reach the hygropause. 

More recently, Dessler [1998] used radiosonde data from 
1994 to 1997 to reexamine the stratosphere fountain hy- 
pothesis and found that the zonal and annual average mix- 
ing ratio of water vapor entering the stratosphere agreed 
well with the zonal and annual average saturation mixing 
ratio of the tropical tropopause region and therefore that the 
stratospheric fountain hypothesis was unnecessary. There 
remains some debate over this issue [V6mel and Oltmans, 
1999; Dessler, 1999]. Zhou et al. [2001] analyzed ra- 
diosonde data over the years 1973-1978, a longer time pe- 
riod than that which Dessler [1998] used, and showed that 
although the stratospheric fountain might not have been nec- 
essary to account for stratospheric mixing ratios during the 
mid- 1990s as Dessler found, it was necessary for most of the 
years before that. It has also been suggested that the word 
"fountain" is inappropriate since air has been shown to be 
sinking in the fountain region [Sherwood, 2000; Gettleman 
et al., 2000]. The term "cold trap" might be more apt, with 
air mixing quasi-horizontally though the cold region [Holton 
and Gettleman, 2001]. 

Some of these theories lead more or less structure in the 

lower stratospheric water vapor field to be expected. The 
aims of this paper are twofold, to show that there is consid- 
erable structure to the water vapor field at 68 hPa and to ex- 
ploit the daily coverage of MLS in the tropical region to fol- 
low synoptically the evolution of the observed features. We 
focus on the boreal winters of 1992 and 1993 when the dri- 

est air is found in the lower stratosphere. The appearance of 
the driest air has longitudinal preferences which could give 
some insight into the role of the stratospheric fountain in the 
dehydration of the lower stratosphere. 

2. Data 

The UARS satellite [Reber, 1993] is in an almost circular 
orbit at an altitude of 585 km and an inclination of 57 ø to 

the equator. It makes about 15 orbits a day. MLS makes a 
limb scan perpendicular to the UARS orbit path from a tan- 
gent height of 90 km to the surface. The measurements of 
limb radiance from one scan are used to deduce profiles of 
temperature and of the mixing ratio of various species. The 
profiles are retrieved on a fixed pressure grid. Version 104, 
which we use here, has six levels per pressure decade: ap- 
proximately one level every 2.5-3 km. MLS provides a 3 km 
field of view in the vertical. Latitudinal coverage changes 
from between 80øN and 34øS to between 34øN and 80øS 

about every 36 days because of the satellite making a yaw 
maneuver. The tropical region is thus, barring occasional 
instrument problems, observed daily, and measurements are 
available from September 19, 1991 to April 22, 1993. The 
MLS instrument is described in more detail by Barath et al. 
[1993], and the measurement technique is described by Wa- 
ters [ 1993]. 

Version 104 was a prototype version developed before the 
most recent version, version 5, and using a slightly different 
method. Version 104 is an improvement on previous ver- 
sions [Pumphrey, 1999] and also has advantages over ver- 
sion 5. We have chosen not to use version 5 for this study 
because it appears to have more problems than version 104 
in the lowest part of the stratosphere. A more detailed dis- 
cussion of the use of version 104 and version 5 is given by 
Pumphrey et al. [2000]. 

For the reasons given by Pumphrey et al. [2000] we do 
not feel that the 100 hPa data can be believed sufficiently 
to investigate the spatial structure on a daily basis, although 
papers such as those by Pumphrey et al. [2000] and Mote 
et al. [1998a] have demonstrated that it shows some phys- 
ically reasonable behavior. We therefore confine our study 
to the 68 hPa level. The averaging kernel for the 68 hPa 
level has a full width at half height of about 4.2 km, broader 
than the 3 km typical of the midstratosphere. The retrieved 
value at 68 hPa therefore depends to some extent on the 
true values at 100 and 46 hPa. It is important to keep in 
mind that the retrieved points should be interpreted as val- 
ues at the breakpoints of a piecewise-linear representation 
of the vertical profile. We estimate, at this level, the pre- 
cision of a single profile to be 0.3 ppmv and the accuracy 
to be 0.75 ppmv. MLS shows little bias against frost point 
hygrometer data at 68 hPa but shows a dry bias when com- 
pared with data from the HALogen Occultation Experiment 
(HALOE) and aircraft-mounted Lyman-alpha instruments 
[Pumphrey, 1999]. This should be borne in mind when con- 
sidering the mixing ratios discussed in the remainder of this 
paper. 

3. Evolution of Patterns at 68 hPa 

The time-height sections which revealed the tape recorder 
effect in the paper by Mote et al. [1996] were based on 
the average water vapor mixing ratio in a tropical bin from 
12øN to 12øS and hence gave no information about the hor- 
izontal distribution of water vapor and how it changes. At 
68 hPa there remains some regional structure to the water 
vapor field. We describe this regional structure and its de- 
velopment over time. 

The 68 hPa level at the launch date of UARS (September 
8, 1991) was relatively moist, remaining so until around Jan- 
uary 1992 [Mote et al., 1996]. It then began to get drier, with 
the dry phase existing until June or July. This was followed 
by a moist tape signal which was present until January 1993. 
Sequences of days have been studied throughout the entire 
period for which there are data from the 183 GHz channel on 
MLS (September 1991 to April 1993), but we focus here on 
the later part of the transition from the moist to dry phases 
when the driest air appears at the 68 hPa level. 

The longitude-time section in Figure 1 shows the evolu- 
tion of this driest phase at 10øN from the beginning of Jan- 
uary 1992. MLS footprints were interpolated onto points 
spaced every 5 ø in longitude at 10øN as described by Clark 
et al. [1998]. We shade contours in the range 2.8-3.4 ppmv 
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Figure 1. Longitude-time section at 10øN showing the dri- 
est phase of Northern Hemisphere winter 1992. The contour 
interval is 0.075 ppmv, and the shading corresponds to that 
in Figure 2. 

to correspond with Figure 2. The slope of, for example, 
the 3.1-3.25 ppmv and 2.95-3.10 ppmv contours in early 
February 1992 suggests some eastward movement. There 
is frequent appearance of air with mixing ratios less than 
2.95 ppmv over the Indonesian region around 130øE and in 
the eastern Pacific around 270øE. In late March there is a 

westward shift in the appearance of the dry air around In- 
donesia. The occurrence of these lowest mixing ratios is 
more sporadic and remains more localized compared with 
air of mixing ratio 2.95-3.10 ppmv which spreads across all 
longitudes by April. We look at the evolution of these fea- 
tures in more detail in section 3.1 

3.1. Water Vapor Fields in 1992 

Figure 2 shows 5-day averages of water vapor mixing ra- 
tio interpolated onto the 435 K isentropic surface, this sur- 

face corresponding most closely to 68 hPa during the time 
period of study. Maps were created using an exponential 
distance-weighted interpolation onto a grid of 2 ø in latitude 
by 10 ø in longitude. The use of 5-day averages, or pen- 
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Figure 2. Sequence of 5-day averaged MLS water vapor 
(ppmv) on the 435 K isentropic surface showing the appear- 
ance of the driest air in 1992. 
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tads, removes some of the small-scale random features and 

improves the precision. The sequence begins on February 
20, 1992, when air with a mixing ratio of 2.95-3.10 ppmv 
appeared in the Northern Hemisphere over Southeast Asia 
and Indonesia and over the eastern Pacific off the coast of 

Panama. These values spread rapidly, and seemingly east- 
ward across the Pacific, and then westward toward Africa, 

eventually engulfing the entire latitude circle. 
Drier air with mixing ratio 2.80-2.95 ppmv also appeared 

first over the tip of India followed by Indonesia, the coast 
of Panama on March 1, and Africa around the March 21. 

An eastward and southward spread of the pattern resulted 
in a dry band, confined to 15øN to 5øS along the equator, 
which remained until the middle of June. The appearance 
of the driest air (<2.8 ppmv) is more sporadic, seen first 
over the western Pacific on March 5. Looking at points later 
in the time series, air as dry as this has remained fairly lo- 
calized, as the longitude-time section of Figure 1 suggests. 
Hence the lower stratosphere has dried to a background of 
2.8-2.95 ppmv with occasional drier intrusions which have 
longitudinal preferences. Intriguingly, the new dry air is 
observed to appear in the regions identified by Newell and 
Gould-Stewart [ 1981 ] as the "stratospheric fountain". 

The air is at most about 25% saturated, and the United 
Kingdom Meteorological Office (UKMO) temperatures 
would need to be at least 8 K colder to achieve saturation 

on the surface in question. This suggests that it is not dry- 
ing in situ and is therefore likely to have come from below 
(not above since the gradient of mixing ratio is in the wrong 
sense), but some studies imply that that air might be sinking 
in these regions [Sherwood, 2000; Gettleman et al., 2000]. 
Whether the vertical velocity introducing this dry air is an 
upward extension of the "fountain" or part of an unrelated 
large-scale uplift is beyond the scope of this study. 

The longitudinal features are in broad agreement with Jan- 
uary and April averages of water vapor at 70 hPa from the 
Stratospheric Aerosol and Gas Experiment (SAGE) II [Rind 
et al., 1993], with dry areas being found above the con- 
vective zones of the western Pacific, Indonesia, Africa, and 

South America. Note that although SAGE II is used to form 
the a priori for MLS, the fact that it is a zonal mean implies 
that the longitudinal structure here is not imposed on SAGE 
II. Jackson et al. [ 1998] examined seasonal, multiyear aver- 
ages from HALOE at 128 hPa, 100 hPa, and 83 hPa. They 
noted that at 100 hPa the lowest water vapor values (around 
2.4 ppmv) appeared in the Northern Hemisphere to the west 
of the Indonesian source region and that the dry air then 
spread southward. Both SAGE II and HALOE, however, 
have a much more limited spatial and temporal resolution in 
the tropics than MLS and are not able to provide the daily 
coverage of the tropical region that we present here. 

Figure 3 shows the difference of the 5-day averaged MLS 
fields from the averaged fields from 10 days before. Much 
of the tropical region had values less than zero, which is in- 
dicative of a general drying. Changes of between -0.25 and 
-0.15 ppmv took place in the Indonesian region on February 
24, and the area moved eastward across the Pacific Ocean 

in the following pentad. At the same time the Indian Ocean 
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Figure 3. Difference between the MLS water vapor field 
(ppmv) and that of 10 days earlier. This figure therefore il- 
lustrates the change in the observed field over 10 days. 

region saw a slight increase in moisture which was followed 
by a reduction in moisture of 0.25 ppmv on March 16 and 
21. Southern Africa and South America were also subject to 
a drying of less than -0.25 ppmv on March 21. On March 
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26 we notice an area of moistening located over the northern 
Pacific in the region of Hawaii. 

3.2. Horizontal Advection for 1992 

We investigate the extent to which these dry and moist 
changes in Figure 3 are produced by horizontal advection 
and how, in particular, the dry area observed by MLS over 
India on February 20 in Figure 2 spreads under the influence 
of the zonal winds. On inspecting Figure 2, there is an im- 
pression that dry air arrives on the February 20 near India 
and spreads eastward. We investigate whether the apparent 
eastward movement can be accounted for by the horizontal 
winds alone or whether vertical motion, mixing, or noncon- 
servation of water vapor need to be invoked to explain the 
evolution. We address this using horizontal trajectories de- 
rived from the UKMO horizontal wind fields. 

The UKMO meteorological analyses were produced using 
the method of data assimilation to complement the UARS 
project [Swinbank and O'Neill, 1994a]. The use of data as- 
similation allows information to be inferred about aspects of 
the atmospheric circulation which are under-represented by 
observations. In the tropics the wind fields are heavily de- 
pendent on the model because of the lack of observations 
there, but Swinbank and O'Neill [ 1994b] showed that the 
analyzed winds agree well with the available radiosonde ob- 
servations in the lower stratosphere. The analyses were also 
shown to contain a realistic quasi-biennial oscillation (QBO) 
in the middle and upper stratosphere and semiannual oscil- 
lation in the upper stratosphere and lower mesosphere. 

Coy and Swinbank [ 1997] compared UKMO winds with 
those assimilated from the Goddard Space Flight Center 
(GSFC) for February 1992 (the time period of study here). 
They found that zonal winds in the lower stratosphere com- 
pared well, with those from GSFC being greater than those 
from UKMO by 2 ms -] at about 100 hPa and those from 
UKMO being greater than those from GSFC by 2 ms -1 at 
around the 68 hPa level. They also compared local differ- 
ences between the two data sets by calculating the difference 
between the two wind components at each grid point for each 
day during the month. At about 68 hPa in the tropics, GSFC 
winds were 3-5 ms -1 greater than those UKMO. 

In addition, an unpublished study by one of the authors 
(A. Billingham) of the differences between the UKMO as- 
similated winds and the Singapore radiosondes at 68 hPa 
gives some confidence that the trajectories can be adequately 
computed. The December-January-February period was stud- 
ied for 1997, 1998, and 1999 (the times of our available 
radiosonde data), and the results from the comparison of 
the 1997 period are offered as representative of the study's 
findings. The mean zonal wind speed at the Singapore ra- 
diosonde station was 6.7 ms -1, and the mean meridional 
windspeed was 2.5 ms-1. The mean difference between the 
radiosonde and UKMO wind components (radiosonde mi- 
nus UKMO) was 1.3 ms -1 for the zonal wind speed and 
-0.4 ms -1 for the meridional wind speed, with the corre- 
sponding RMS of the random differences being 3.4 ms -1 
and 2.9 ms -i , respectively. The correlation between zonal 
wind components was 0.86. 
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1992 Feb 24 

1992 Mar 1 

1992 Mar 5 

1992 Mar 11 

1992 Mar 16 

1992 Mar 21 
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Figure 4. Ten-day advection of MLS water vapor (ppmv) for 
1992 on the 435 K isentropic surface using UKMO winds. 

If the bias between the radiosonde and the analyzed wind 
at Singapore is added to the UKMO wind field everywhere, 
it results in a displacement of the advected field by about 
1000 km in the zonal direction (1000 km being within the 
2600 km resolution of MLS at the equator) and 300 km in 
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the meridional direction over a 1 O-day advection. Similarly, 
perturbing the winds by an amount comparable to the differ- 
ence between the two data sets does not make a significant 
difference in the resulting fields. We therefore believe the 
UKMO analyses to be sufficient to support the qualitative 
statements that we make below. 

Figure 4 shows the water vapor field after it has been 
advected for 10 days on the 435 K isentropic surface with 
UKMO horizontal wind fields using a fourth order Runge- 
Kutta scheme. The UKMO winds are updated once every 
24 hours. Following Waugh and Plumb [1994], we esti- 
mate that reasonably accurate trajectories can be calculated 
with daily wind fields and that significant differences de- 
velop only when the wind field is updated after more than 
1 day has elapsed. 

For each of the 5 days that comprise the pentad, the MLS 
footprints from 10 days before were interpolated onto par- 
cel positions which, when advected forward with the UKMO 
winds, would leave the parcels on the same regular grid used 
in Figure 2. The advection is performed for 10 days, and the 
resulting fields are averaged over 5 days. Figure 2 and Figure 
4 can thus be compared. The production of filaments leads 
to details which cannot be resolved with MLS, and we there- 

fore smooth the advected field slightly to give a comparable 
view to that from MLS. 

The hatched areas in Figure 4 are areas where no water va- 
por value has been assigned to the parcel because the parcel 
began its journey outside the viewing range of MLS on 3 or 
more of the days which comprise the 5-day average. When 
MLS is looking north, the hatched areas occur in the South- 
ern Hemisphere, and when MLS is looking south, they occur 
in the Northern Hemisphere. The hatched areas in Figure 4 
tend to coincide with some of the highest mixing ratios, re- 
placing regions of mixing ratios greater than 3.70 ppmv in 
Figure 2. This suggests that the highest mixing ratios result 
from transport into tropics through the barriers of the "tropi- 
cal pipe" [Plumb, 1996]. The spreading of the tape recorder 
signal out of the tropics to midlatitudes was seen in zonal 
means of MLS data at 68 hPa by Pumphrey et al. [2000]. 

Values of less than 3.10 ppmv are widespread through- 
out the sequence of maps from MLS (Figure 2), whereas 
in the sequence of advected maps (Figure 4), mixing ratios 
of similar value are not prominent until March 5, some 20 
days into the sequence. Similarly, mixing ratios in the ob- 
served field of less than 2.95 ppmv are not obvious in the 
advected field until March 16, some 25 days after they first 
appeared in the observed field. We note that the advected 
fields (Figure 4) do not preserve the maxima and minima 
of the initial fields (Figure 2) although the process of hor- 
izontal advection should preserve them. We have investi- 
gated the apparent discrepancy in detail, and there are two 
processes which contribute to the apparent nonconservation. 
Firstly, the 5-day time average is a contributor, and secondly, 
although values are correctly preserved by individual trajec- 
tories, the production of filaments followed by the spatial av- 
eraging implicit in the mapping technique alters the mapped 
maxima and minima. 

On March 1, in the observed water vapor field (Figure 2), 
mixing ratios of less than 3.10 ppmv are found across the 
breadth of the Pacific Ocean. Air with these mixing ratios 
is seen only in the Indian Ocean and Bay of Bengal region 
in the advected field (Figure 4). On March 5, air with a 
mixing ratio of 2.95-3.10 ppmv has spread right along the 
equator from its more localized position on February 24, 
10 days earlier. The corresponding advected field (March 
5) shows that the 2.95-3.10 ppmv area has remained con- 
fined to the !ndonesian region (with some advection along 
the coast of China). Similarly, the air with mixing ratios 
of 2.80-2.95 ppmv which covers the Pacific in the observed 
field on March 11, has spread all round the world by March 
21st. The advected field for March 21 shows the 2.80-2.95 

contour interval to still be centered over the Pacific Ocean. 

We see that horizontal advection by UKMO winds cannot 
account for the evolution of the patterns in the water vapor 
field observed at 435 K. Thus they do not support the impres- 
sion that air spreads solely from Indonesia and the western 
Pacific, which were regions identified by Newell and Gould- 
Stewart [ 1981] as the most likely places where air enters the 
stratosphere. If not by advection, it could be inferred that the 
appearance of dry air outside these regions has originated at 
a different altitude. The MLS data suggest that the dry air 
probably comes from below 435 K since the mixing ratios 
decrease with height. This can be inferred from the phase of 
the tape recorder and seen on inspecting fields of MLS water 
vapor at 46 hPa. 

If air rises through the tropopause continually and in most 
places, as implied by the tape recorder [Mote et al., 1996], 
the spatial pattern we observe would be the consequence of 
a general slow ascent of a zonally asymmetrical pattern im- 
posed lower in the atmosphere, probably by convection. It 
would then be surprising for that spatial variation to have 
remained up to 435 K. Taking the tropical tropopause to be 
around 380 K [Holton et al., 1995 ], we would have expected 
rapid zonal motion to have smeared out any pattern over the 
60 days or so [Mote et al., 1998b] that it would take for the 
air to ascend to the 435 K surface studied and, as a result, for 

the 68 hPa surface to have little longitudinal variation and a 
mostly zonal structure. 

Since localized patterns are observed, we are led toward 
two possibilities. The first is that because of the limited ver- 
tical resolution of MLS and the thickness of the weighting 
function, the patterns seen at 68 hPa might be the result of 
contamination by features which actually occur lower in the 
atmosphere. The second is that the patterns are indeed im- 
posed close to the 68 hPa level by convection or by some 
other mechanism. 

To consider the first issue, some indication of whether the 

patterns we observe at 68 hPa are genuinely near that sur- 
face, or are retrieval artifacts imposed from a different level, 
can be obtained from the averaging kernels in Figure 5. The 
retrieved profile is piecewise linear. The averaging kernel 
shows the weight with which variations in the true profile 
(in this case represented by a similar piecewise-linear pro- 
file) contribute to variations at the nodes (join points). Ide- 
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Figure 5. Averaging kernels for 68 hPa and the two levels on 
either side. The 100 hPa and 46 hPa kernels have been offset 
by -0.2 and +0.2, respectively, to make the figure clearer. 

ally, the averaging kernels for a given node would be zero at 
all the other node points. Figure 5 shows that the kernel for 
46 hPa approximates that fairly well, while those for 68 hPa 
and 100 hPa are less ideal. In particular, the 68 hPa kernel 
has the value 0.63 at 68 hPa and 0.18 at 100 hPa. Thus a 

perturbation of about 2 ppmv in the true profile at 100 hPa 
produces about a 0.6 ppmv perturbation in the retrieved pro- 
file at 68 hPa. 

To further demonstrate these effects, we apply a sinu- 
soidal wave perturbation in the longitudinal direction at 
100 hPa to an otherwise unperturbed atmosphere. Figure 
6 shows how this appears in the retrieved values at 100 and 
68 hPa. The effect of the perturbation can be seen at both 
levels, but with amplitude diminished by values consistent 
with the averaging kernels. While it is true that the retrieved 
patterns at 68 hPa could be induced by a larger perturbation 
at 100 hPa, in that case we would expect to see signs of the 
same pattern in the retrieved values for the 100 hPa level. 
The 100 hPa fields show some correlation with 68 hPa, but 

variations are of smaller amplitude. The contribution from 
lower levels is small, and we therefore infer that the pat- 
terns are imposed close to 68 hPa or, at least, well above the 
380 K or 90 hPa levels traditionally used as the demarcation 
between the troposphere and stratosphere. 

There is much discussion as to the height to which tropical 
convection can reach, but generally, it is not considered to 
be high enough or occur with sufficient frequency, such that 
it could impose patterns on the 68 hPa surface, as we have 
seen here. Danielsen [1982] suggested that tropical convec- 
tive systems could lead to dehydration in the stratosphere, 
prompting in situ measurement campaigns to look for evi- 
dence of deep convection in the tropics. The Stratosphere- 
Troposphere Exchange Project, Tropical Experiment (STEP 
Tropical) [Russell et al., 1993], for example, investigated 
stratosphere-troposphere exchange and the dehydration pro- 
cess in the western Pacific and northern Australia during the 

monsoon in January-February of 1987. Pfister et al. [1993] 
showed that monsoon tropical cyclones mixed tropospheric 
air directly into the stratosphere at heights of around 18 km 
by means of detrainment from small and numerous over- 
shooting turrets. 

Convection that reaches these altitudes is thought to be 
infrequent, with some studies suggesting that tropical con- 
vection rarely reaches above the tropopause [e.g., High- 
wood and Hoskins, 1998] and with little extent beyond about 
14 km [Folkins et al., 1999]. Although cirrus cloud forma- 
tion is frequently observed at 68 hPa, as Wang et al. [1996] 
and Mergenthaler et al. [ 1999] have seen with satellite data, 
it is unclear whether this cirrus forms as a result of over- 

shooting convection or as the result of slow wave-driven as- 
.... ^ r-,_,•++l ..... t •1 t'!-h{ctr•tlc•n and infl,,once of 
•.,%.,,11L. z 1. vt. t,•x. k. 

convection in the tropical tropopause region, submitted to 
Journal of Geophysical Research, 2000) found that in con- 
vective regions, clouds penetrate the tropopause only 2% of 
the time and cannot supply sufficient mass to the tropical 
lower stratosphere. Sherwood and Desder [2001], on the 
other hand, suggest that the layer between the typical de- 
trainment height (150 hPa) and 100 hPa could be replaced 
by dry air from overshooting convection by the time air had 
crossed through jt by slow ascent, and they state that this 
argument also holds for the lower stratosphere. Much de- 
bate surrounds the issue of overshooting convection and its 
relative contribution to the water vapor content of the lower 
stratosphere. The interpretation of the features in the water 
vapor field shown here rests crucially upon this debate. 
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Figure 6. Effect of a sine wave perturbation applied to the 
true profile at 100 hPa on the retrieved values at 68 hPa and 
46 hPa. The thin lines show the true state at 100 hPa (thin, 
solid line), 68 hPa (thin, short-dashed line ) and 46 hPa (thin, 
long-dashed line). The 100 hPa line is therefore the applied 
perturbation, and the 68 and 46 hPa lines are constant. The 
thick lines show the retrieved value after the perturbation is 
applied, at 100 hPa (thick, solid line), 68 hPa (thick, dashed 
line), and 46 hPa (thick, dash-dotted line). 
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The patterns that we see at 68 hPa could well be the result 
of both overshooting convection and slow ascent and would 
therefore perhaps be better interpreted within the "tropical 
tropopause layer" (TTL) theory as suggested by Sherwood 
and Dessler [2000]. They propose that air detrains at vari- 
ous levels throughout the TTL, defined as the area between 
about 14 km, where most convection detrains, and 70 hPa, 

the highest level that convection can reach. Air on any given 
isentropic surface will have a range of "ages", with air that is 
further from convection, having been in the TTL for longer, 
being older and therefore moister than air that has recently 
detrained. The patterns we describe are found just below the 
top of their proposed TTL. Figures 1 and 2 showed that air 
in the two main convective regions, the western Pacific and 
Panama, was drier and therefore probably younger, having 
arrived on the 435 K surface first, just 10 days or so before 
air which detrained elsewhere within the TTL. To produce 
the driest areas over the western Pacific and South America, 

which are fairly consistent in Figure 1, however, air in the 
convective regions would have to be constantly replenished 
by new dry air from convective detrainment at a level close 
to 68 hPa, and it is unclear as to whether this would be pos- 
sible within this theory. Air outside the convective regions 
must have taken longer to have come up from below, having 
detrained from tropical convection near to the bottom of, or 
having risen slowly from the bottom of, the TTL. It may have 
taken a longer and more quasi-horizontal route [Holton and 
Gettleman, 2001], passing through the "cold trap" region at 
some point on its ascent. 

3.3. Water Vapor Fields in 1993 

The Northern Hemisphere winter period for 1993 is shown 
in Figure 7. Because of a couple of days on which MLS 
was not operating, we begin the 1993 sequence on Febru- 
ary 23, 3 days later than in 1992. Although mixing ratios 
of less than 2.95 ppmv were prominent at 68 hPa between 
February and August 1992, values of 2.95-3.10 ppmv are 
much less widespread in 1993. The moist areas in the south- 
ern subtropics are similarly located in 1992 and 1993 over 
Africa, South America, and the South Pacific. The dry fea- 
tures, however, show little eastward translation, and there is 
no zonal structure, which was so striking in 1992. The dri- 
est areas again occur first over Indonesia and the western 
Pacific, followed by Central America. 

The advected fields are shown in Figure 8. As we saw in 
1992, the advected field is not as dry as the observed field. 
On March 15, for example, we see that the observed field 
shows mixing ratios of 2.95-3.10 ppmv in comparison to the 
advected field, with lowest values of 3.10-3.25 ppmv. More- 
over, the advected field on March 15 looks very similar to 
the observed field on March 5, 10 days previously, revealing 
that there has been very little change by advection over the 
10 days. 

Although the maximum mixing ratios in 1992 and 1993 
are similar, the minimum mixing ratios in 1992 are much 
lower than those in 1993. Some interannual differences in 

the degree of dryness were seen in the zonal mean water 
vapor from MLS at 100 hPa and 68 hPa [Pumphrey et al., 

1993 Feb 23 
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1993 Mar 5 

1993 Mar 10 

1993 Mor 15 

1993 Mor 20 

1993 Mar 2,5 

1993 Mar 30 

[ppmv] 

2.80 2.95 3.10 5.25 5.40 5.55 

Figure 7. Sequence of 5-day averaged MLS water vapor 
(ppmv) on the 435 K isentropic surface showing the appear- 
ance of the driest air in 1993. 

2000]. The reasons for this interannual difference may be 
related to one or more possible causes. The eruption of 
Mount Pinatubo in June 1991 increased the aerosol loading 
of the lower stratosphere and led to a warming [Labit•ke and 
McCormick, 1992; Angell, 1993]. A consequent increase 
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Figure 8. Ten-day advection of MLS water vapor (ppmv) 
for 1993 on the 435 K isentropic surface using UKMO 
winds. 

in stratosphere-troposphere exchange may have resulted in 
increases of methane and of water vapor through methane 
oxidation [Schauffier and Daniel, 1994], but an increase of 
water vapor has not been observed by MLS [Elson et al., 

1996; Evans et al., 1998]. Mergenthaler et al. [1999] noted 
that cirrus clouds were more prevalent during the DJF pe- 
riod of 1992-1993 than in the same period in 1991-1992 and 
suggested that because of the presence of the aerosol veil fol- 
lowing the eruption of Mount Pinatubo, less solar radiation 
would penetrate to the tropics and less convective activity 
would reach the 68 hPa level, resulting in less dehydration 
in 1991-1992. Hence the effect of the eruption of Mount 
Pinatubo would be likely to increase water vapor or reduce 
drying by dehydration, and so we might expect 1991-1992 
to be wetter than 1992-1993, opposite to what is observed. 

It is also possible that the interannual dryness is related 
to the phase of the quasi-biennial oscillation (QBO). When 
the QBO is in its easterly phase, as it is during boreal winter 
1991-1992, lower equatorial temperatures and greater ascent 
rates are implied [Carr et al., 1995]. During the westerly 
phase of the QBO, temperatures are higher, and ascent rates 
are lower. This was the case in northern winter 1992-1993. 

The easterly phase of the QBO could therefore account for 
the lower mixing ratios in 1991-1992 if temperatures were 
lower. The easterly phase of the QBO may also encour- 
age deep convection [Collimore et al., 1998] to overshoot 
the tropopause and hence lead to a drier lower stratosphere. 
There is, however, much uncertainty over the frequency of 
convective overshooting events. 

The phase of the E1Ni•o and Southern Oscillation (ENSO) 
could also have an effect on the dryness in the lower strato- 
sphere because of changes to the temperature and height of 
the tropopause [e.g., Reid and Gage, 1985; Gage and Reid, 
1987]. These interannual variations are not apparent in the 
zonal mean but are evident as an east-west shift in the lon- 

gitude of the height and temperature perturbations [Gage 
and Reid, 1987; Randel et al., 2000]. ENSO affects also 
the height, location, and frequency of deep convection and 
cirrus formation [e.g., Wang et al., 1996; Mergenthaler et 
al., 1999]. The E1Ni•o conditions of DJF 1991-1992 [Tren- 
berth, 1997] and even the strong Madden-Julian oscillation 
at the same time [Clark et al., 1998; Mote et al., 2000] may 
well have encouraged convection, colder tropopause temper- 
atures, and dehydration and altered the longitudinal structure 
of the patterns of water vapor observed. Gettleman et al. 
[2001] noted the spatial difference of the minima in water 
vapor observed by HALOE at 82 hPa. During E1 Ni•o they 
found that the minimum in water vapor extended from the 
maritime continent to the coast of South America and that 

during La Ni•a conditions it was located north of the equa- 
tor in the western Pacific extending into the Indian Ocean. 
They found that at this level the minimum mixing ratios were 
higher during E1 Ni•o conditions, contrary to what we saw 
with 1992 and 1993 from MLS at 68 hPa. However, with 

only 2 years worth of data, is impossible to ascribe these 
interannual differences to either ENSO or the QBO since 
they operate on a longer timescale than that for which we 
have data available. The reason for such a marked differ- 

ence in dryness between the Northern Hemisphere winters 
of 1991-1992 and 1992-1993 is clearly something which re- 
quires further investigation. 



22,704 CLARK ET AL.: THE DRIEST PHASE OF THE "TAPE RECORDER" 

4. Summary References 

During the drying phase of both 1992 and 1993 at 68 hPa, 
MLS shows that the first region to become drier is the In- 
donesian fountain region followed by the western Pacific, 
Panama, and the western coast of North America. Moister 

areas continue to remain over the Southern Hemisphere con- 
tinents and the southern Pacific Ocean. In 1992, dry air is 
eventually found in a band along the equator with the most 
northerly extent over Panama and Indonesia, but there is no 
such zonal structure evident in 1993. 

Some differences in observed dryness exist from year to 
year. Winter 1991-1992 was much drier than 1992-1993, 
and this could be attributed to the easterly phase of the QBO 
in 1991-1992, lowering the temperature of the tropopause 
and encouraging deep convection. ENSO events or the erup- 
tion of Mount Pinatubo may also have played a part in caus- 
ing 1992-1993 to be moister than 1991-1992, but with the 
limited length of the available data set it is not possible to 
assess the importance of these effects. 

Two-dimensional trajectories from UKMO analyses show 
that air of high water vapor mixing ratio is advected into the 
tropical region from outside the 30øN to 30øS band. The tra- 
jectories reveal that low-mixing-ratio air is not spread from 
a source region over Indonesia across the western Pacific to 
account for the dryness over Panama observed some 10 days 
later. Horizontal transport alone cannot account for the ob- 
served patterns. We infer that there must be vertical trans- 
port of water vapor in numerous places across the tropics to 
account for the observed pattern. We suggest that the im- 
portance of the stratospheric fountain region is not that all or 
most of the air enters the stratosphere there, but more that it 
is the first place that sees low mixing ratios. 

The fact that MLS shows such patterns in the water va- 
por field at 68 hPa is somewhat surprising and is difficult to 
explain. If the air rose gradually under the action of the ex- 
tratropical pump, we would have expected rapid horizontal 
motion to have smeared out any pattern, leading to a mostly 
zonal structure to be observed at 68 hPa. We suggest that 
the pattern in the water vapor field is imposed higher than 
the traditional level of 380 K used to indicate the tropopause 
and well above the 14 km level at which most convection 

is considered to detrain. We suggest that the patterns could 
be interpreted as resulting from the action of both slow as- 
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