6,478 research outputs found
Quantum state conversion by cross-Kerr interaction
A generalized Mach-Zehnder-type interferometer equipped with cross-Kerr
elements is proposed to convert N-photon truncated single-mode quantum states
into (N+1)-mode single-photon states, which are suitable for further state
manipulation by means of beam splitter arrays and ON/OFF-detections, and vice
versa. Applications to the realization of unitary and non-unitary
transformations, quantum state reconstruction, and quantum telemanipulation are
studied.Comment: 22 pages, 4 figures, using a4.st
Leakage measuring method
Technique measures leakages of high pressure test specimens occurring on the input rather than the output side of a test specimen. Technique involves paralleling-off the pressure supply line and duplicating and measuring the leakage flowing into a specimen rather than attempting to measure the leakage flowing out of it
Conditional quantum state engineering in repeated 2-photon down conversion
The U(1,1) and U(2) transformations realized by three-mode interaction in the
respective parametric approximations are studied in conditional measurement,
and the corresponding non-unitary transformation operators are derived. As an
application, the preparation of single-mode quantum states using an optical
feedback loop is discussed, with special emphasis of Fock state preparation.
For that example, the influence of non-perfect detection and feedback is also
considered.Comment: 17 pages, 4 figures, using a4.st
Absolute dimensions of eclipsing binaries. XVII. A metal-weak F-type system, perhaps with preference for Y = 0.23-0.24
V1130 Tau is a bright (m_V = 6.56), nearby (71 +/- 2 pc) detached system with
a circular orbit (P = 0.80d). The components are deformed with filling factors
above 0.9. Their masses and radii have been established to 0.6-0.7%. We derive
a [Fe/H] abundance of -0.25 +/- 0.10. The measured rotational velocities, 92.4
+/- 1.1 (primary) and 104.7 +/- 2.7 (secondary) km/s, are in fair agreement
with synchronization. The larger 1.39 Msun secondary component has evolved to
the middle of the main-sequence band and is slightly cooler than the 1.31 Msun
primary. Yonsai-Yale, BaSTI, and Granada evolutionary models for the observed
metal abundance and a 'normal' He content of Y = 0.25-0.26, marginally
reproduce the components at ages between 1.8 and 2.1 Gyr. All such models are,
however, systematically about 200 K hotter than observed and predict ages for
the more massive component, which are systematically higher than for the less
massive component. These trends can not be removed by adjusting the amount of
core overshoot or envelope convection level, or by including rotation in the
model calculations. They may be due to proximity effects in V1130 Tau, but on
the other hand, we find excellent agreement for 2.5-2.8 Gyr Granada models with
a slightly lower Y of 0.23-0.24. V1130 Tau is a valuable addition to the very
few well-studied 1-2 Msun binaries with component(s) in the upper half of the
main-sequence band, or beyond. The stars are not evolved enough to provide new
information on the dependence of core overshoot on mass (and abundance), but
might - together with a larger sample of well-detached systems - be useful for
further tuning of the helium enrichment law.Comment: Accepted for publication in Astronomy & Astrophysic
Absolute dimensions of eclipsing binaries. XXVIII. BK Pegasi and other F-type binaries: Prospects for calibration of convective core overshoot
We present a detailed study of the F-type detached eclipsing binary BK Peg,
based on new photometric and spectroscopic observations. The two components,
which have evolved to the upper half of the main-sequence band, are quite
different with masses and radii of (1.414 +/- 0.007 Msun, 1.988 +/- 0.008 Rsun)
and (1.257 +/- 0.005 Msun, 1.474 +/- 0.017 Rsun), respectively. The 5.49 day
period orbit of BK Peg is slightly eccentric (e = 0.053). The measured
rotational velocities are 16.6 +/- 0.2 (primary) and 13.4 +/- 0.2 (secondary)
km/s. For the secondary component this corresponds to (pseudo)synchronous
rotation, whereas the primary component seems to rotate at a slightly lower
rate. We derive an iron abundance of [Fe/H] =-0.12 +/- 0.07 and similar
abundances for Si, Ca, Sc, Ti, Cr and Ni. Yonsei-Yale and Victoria-Regina
evolutionary models for the observed metal abundance reproduce BK Peg at ages
of 2.75 and 2.50 Gyr, respectively, but tend to predict a lower age for the
more massive primary component than for the secondary. We find the same age
trend for three other upper main-sequence systems in a sample of well studied
eclipsing binaries with components in the 1.15-1.70 Msun range, where
convective core overshoot is gradually ramped up in the models. We also find
that the Yonsei-Yale models systematically predict higher ages than the
Victoria-Regina models. The sample includes BW Aqr, and as a supplement we have
determined a [Fe/H] abundance of -0.07 +/- 0.11 for this late F-type binary. We
propose to use BK Peg, BW Aqr, and other well-studied 1.15-1.70 Msun eclipsing
binaries to fine-tune convective core overshoot, diffusion, and possibly other
ingredients of modern theoretical evolutionary models.Comment: Accepted for publication in Astronomy and Astrophysic
Entanglement purification of multi-mode quantum states
An iterative random procedure is considered allowing an entanglement
purification of a class of multi-mode quantum states. In certain cases, a
complete purification may be achieved using only a single signal state
preparation. A physical implementation based on beam splitter arrays and
non-linear elements is suggested. The influence of loss is analyzed in the
example of a purification of entangled N-mode coherent states.Comment: 6 pages, 3 eps-figures, using revtex
Dynamical Effects from Asteroid Belts for Planetary Systems
The orbital evolution and stability of planetary systems with interaction
from the belts is studied using the standard phase-plane analysis. In addition
to the fixed point which corresponds to the Keplerian orbit, there are other
fixed points around the inner and outer edges of the belt. Our results show
that for the planets, the probability to move stably around the inner edge is
larger than the one to move around the outer edge. It is also interesting that
there is a limit cycle of semi-attractor for a particular case. Applying our
results to the Solar System, we find that our results could provide a natural
mechanism to do the orbit rearrangement for the larger Kuiper Belt Objects and
thus successfully explain the absence of these objects beyond 50 AU.Comment: accepted by International Journal of Bifurcation and Chaos in Aug.
2003, AAS Latex, 27 pages with 6 color figure
Heralded single-photon generation using imperfect single-photon sources and a two-photon-absorbing medium
We propose a setup for a heralded, i.e. announced generation of a pure
single-photon state given two imperfect sources whose outputs are represented
by mixtures of the single-photon Fock state with the vacuum
. Our purification scheme uses beam splitters, photodetection and a
two-photon-absorbing medium. The admixture of the vacuum is fully eliminated.
We discuss two potential realizations of the scheme.Comment: 22 pages, 8 figures (LaTeX). In version v2 we have slightly modified
our setup so as to increase the success probability of single-photon
generation by a factor of two. In addition, in an appendix we discuss
alternative realizations of single-photon generation without a Mach-Zehnder
interferometer. Three new figures have been added. Version v3 is a revised
version published in Phys. Rev. A. It contains numerous minor corrections and
clarifications. A new figure has been added in order to clarify our
convention regarding labelling the field modes. The action of the beam
splitters in the Schroedinger picture is introduced. A new reference has been
include
Production of superpositions of coherent states in traveling optical fields with inefficient photon detection
We develop an all-optical scheme to generate superpositions of
macroscopically distinguishable coherent states in traveling optical fields. It
non-deterministically distills coherent state superpositions (CSSs) with large
amplitudes out of CSSs with small amplitudes using inefficient photon
detection. The small CSSs required to produce CSSs with larger amplitudes are
extremely well approximated by squeezed single photons. We discuss some
remarkable features of this scheme: it effectively purifies mixed initial
states emitted from inefficient single photon sources and boosts negativity of
Wigner functions of quantum states.Comment: 13 pages, 9 figures, to be published in Phys. Rev.
- …