11 research outputs found

    The miniJPAS survey : white dwarf science with 56 optical filters

    Get PDF
    Aims. We analyze the white dwarf population in miniJPAS, the first square degree observed with 56 medium-band, 145 Å in width optical filters by the Javalambre Physics of the accelerating Universe Astrophysical Survey (J-PAS), to provide a data-based forecast for the white dwarf science with low-resolution (R ∼ 50) photo-spectra. Methods. We define the sample of the bluest point-like sources in miniJPAS with r <  21.5 mag, a point-like probability larger than 0.5, (u − r)< 0.80 mag, and (g − i)< 0.25 mag. This sample comprises 33 sources with spectroscopic information: 11 white dwarfs and 22 quasi-stellar objects (QSOs). We estimate the effective temperature (Teff), the surface gravity, and the composition of the white dwarf population by a Bayesian fitting to the observed photo-spectra. Results. The miniJPAS data are sensitive to the Balmer series and the presence of polluting metals. Our results, combined with those from the Javalambre Photometric Local Universe Survey (J-PLUS) which has a lower spectral resolution but has already observed thousands of white dwarfs, suggest that J-PAS photometry would permit – down to r ∼ 21.5 mag and at least for sources with 7000   7000 K can be segregated from the bluest extragalactic QSOs, providing a clean sample based on optical photometry alone. Conclusions. The J-PAS low-resolution photo-spectra would produce precise effective temperatures and atmospheric compositions for white dwarfs, complementing the data from Gaia. J-PAS will also detect and characterize new white dwarfs beyond the Gaia magnitude limit, providing faint candidates for spectroscopic follow-up

    Randomized clinical trials of dental bleaching – Compliance with the CONSORT Statement: a systematic review

    Full text link

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Geophysical survey at the early Christian complex of Son Peretó (Mallorca, Balearic Islands, Spain)

    No full text
    Rural basilicas are the most important evidence of Christianization of the countryside on the island of Mallorca (Balearic Islands, Spain). Recent investigations of rural landscape transformations suggest that some churches were built along communication routes and linked to pre-existing settlements. To obtain new data that could support this hypothesis, a geophysical survey has been carried out at the early Christian complex of Son Peretó, one of the most emblematic sites for the understanding of Late Antiquity on the island. The objective was to better define the site that is undergoing excavation, and to investigate the possible presence of other constructions further than the Christian complex. The geophysical survey was carried out combining magnetometry and groundpenetrating radar. For the magnetic investigation of large site areas, a 7-probe fluxgate gradiometer array LEA MAX was used. GPR was used to examine the areas nearby the remains already excavated and to better define areas where magnetometry revealed interesting anomalies. GPR was developed by means of the IDS GPR system, which was based on the Fast-Wave module. The results revealed both the presence of architectural remains beneath the soil that help define the early Christian complex, as well as other remains that suggest the church was part of a larger settlement

    Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake

    No full text
    Contains fulltext : 118302.pdf (publisher's version ) (Closed access)Creatine (Cr) plays an important role in muscle energy homeostasis by its participation in the ATP-phosphocreatine phosphoryl exchange reaction mediated by creatine kinase. Given that the consequences of Cr depletion are incompletely understood, we assessed the morphological, metabolic and functional consequences of systemic depletion on skeletal muscle in a mouse model with deficiency of l-arginine:glycine amidinotransferase (AGAT(-/-)), which catalyses the first step of Cr biosynthesis. In vivo magnetic resonance spectroscopy showed a near-complete absence of Cr and phosphocreatine in resting hindlimb muscle of AGAT(-/-) mice. Compared with wild-type, the inorganic phosphate/beta-ATP ratio was increased fourfold, while ATP levels were reduced by nearly half. Activities of proton-pumping respiratory chain enzymes were reduced, whereas F(1)F(0)-ATPase activity and overall mitochondrial content were increased. The Cr-deficient AGAT(-/-) mice had a reduced grip strength and suffered from severe muscle atrophy. Electron microscopy revealed increased amounts of intramyocellular lipid droplets and crystal formation within mitochondria of AGAT(-/-) muscle fibres. Ischaemia resulted in exacerbation of the decrease of pH and increased glycolytic ATP synthesis. Oral Cr administration led to rapid accumulation in skeletal muscle (faster than in brain) and reversed all the muscle abnormalities, revealing that the condition of the AGAT(-/-) mice can be switched between Cr deficient and normal simply by dietary manipulation. Systemic creatine depletion results in mitochondrial dysfunction and intracellular energy deficiency, as well as structural and physiological abnormalities. The consequences of AGAT deficiency are more pronounced than those of muscle-specific creatine kinase deficiency, which suggests a multifaceted involvement of creatine in muscle energy homeostasis in addition to its role in the phosphocreatine-creatine kinase system

    A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study

    No full text
    Background: The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene–drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed. Methods: We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug–gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug–gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug–gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants. Findings: Between March 7, 2017, and June 30, 2020, 41 696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54–0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61–0·79]; p &lt;0·0001). Interpretation: Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe. Funding: European Union Horizon 2020

    The Neuroprotective Role of Creatine

    No full text
    corecore