25 research outputs found

    Ecological value of coastal habitats for commercially and ecologically important species

    Get PDF
    Many exploited fish and macroinvertebrates that utilize the coastal zone have declined, and the causes of these declines, apart from overfishing, remain largely unresolved. Degradation of essential habitats has resulted in habitats that are no longer adequate to fulfil nursery, feeding, or reproductive functions, yet the degree to which coastal habitats are important for exploited species has not been quantified. Thus, we reviewed and synthesized literature on the ecological value of coastal habitats (i.e. seagrass beds, shallow subtidal and intertidal habitats, kelp beds, shallow open water habitats, saltmarshes, mussel beds, macroalgal beds, rocky bottom, and mariculture beds) as feeding grounds, nursery areas, spawning areas, and migration routes of 59 taxa, for which the International Council for the Exploration of the Sea (ICES) gives management advice, and another 12 commercially or ecologically important species. In addition, we provide detailed information on coastal habitat use for plaice (Pleuronectes platessa), cod (Gadus morhua), brown shrimp (Crangon crangon), and European lobster (Homarus gammarus). Collectively, 44 of all ICES species utilized coastal habitats, and these stocks contributed 77 of the commercial landings of ICES-advice species, indicating that coastal habitats are critical to population persistence and fishery yield of ICES species. These findings will aid in defining key habitats for protection and restoration and provide baseline information needed to define knowledge gaps for quantifying the habitat value for exploited fish and invertebrates

    Modelling population effects of juvenile offshore fish displacement towards adult habitat

    Get PDF
    Recent studies of fish distribution patterns highlight shifts in the spatial distributions of particular life-stages. Focus has thus far been on changes in habitat use and possible drivers for these changes. Yet, small-scale shifts in habitat use of certain life stages may have profound consequences on population dynamics through changes in resource use and competition. To explore this, a conceptual stage-structured model was developed with 3 stages and 2 resources and allowing a move of large juveniles from the shallow to the deep habitat. Large juveniles compete with small juveniles in shallow waters and with adults in deeper waters. Alternative stable states occur, with one state dominated by small juvenile biomass and the other dominated by adult biomass.The model results show for both states that while large juvenile biomass responds to a change in time spent in the deep habitat, the biomass of small juveniles and adults is barely affected. Between the 2 states there is a profoundly different population response to increased fishing mortality. In the adult biomass dominated state, adult biomass is hardly affected while juvenilebiomass increases until population collapse, with increased fishing. In the small juvenile dominated state, adult and small juvenile biomass decrease, and large juvenile biomass increases. This state persists at much higher fishing mortality than the adult biomass dominated state. This study highlights that safeguarding nursery functions in a changing environment requires monitoring of juvenile life-stages in a range of habitats and a spatially adaptive management strateg

    Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters

    Get PDF
    General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones

    Stickleback increase in the Baltic Sea \u2013 a thorny issue for coastal predatory fish?

    No full text
    In the Baltic Sea, the mesopredator three-spined stickleback (Gasterosteus aculeatus) spends a large part of its life cycle in the open sea, but reproduces in shallowcoastal habitats. In coastal waters, it may occur in high abundances, is a potent predatoron eggs and larvae of \ufb01sh, and has been shown to induce trophic cascades with resulting eutrophication symptoms through regulation of invertebrate grazers. Despite its potential signi\ufb01cance for the coastal food web, little is known about its life history and population ecology. This paper provides a description of life history traits, migration patterns and spatiotemporal development of the species in the Baltic Sea during the past decades, and tests the hypothesis that stickleback may have a negative impact on populations of coastal predatory \ufb01sh. Offshore and coastal data during the last 30 years show that stickleback has increased fourfold in the Bothnian Sea, 45-fold in the Central Baltic Sea and sevenfold in the Southern Baltic Sea. The abundances are similar in the two northern basins, and two orders of magnitude lower in the Southern Baltic Sea. The coastward spawning migration of sticklebacks from offshore areas peaks in early May, with most spawners being two years of age at a mean length of 65 mm. The early juvenile stage is spent at the coast, whereafter sticklebacks perform a seaward feeding migration in early autumn at a size of around 35 mm. A negative spatial relation between the abundance of stickleback and earlylife stages of perch and pike at coastal spawning areas was observed in spatial survey data, indicating strong interactions between the species. A negative temporal relationship was observed also between adult perch and stickleback in coastal \ufb01sh monitoring programmes supporting the hypothesis that stickleback may have negative population level effects on coastal \ufb01sh predators. The recent increase in stickleback populations in different basins of the Baltic Sea in combination with negative spatiotemporal patterns and previously observed interactions between stickleback and coastal predatory \ufb01sh suggests that this species may have gained a key role in the coastal food webs of the Baltic Sea. Through its migrations, stickleback may also constitute an important vector linking coastal and open sea ecosystem Dynamics

    Alien Fish Species in the Eastern Mediterranean Sea: Invasion Biology in Coastal Ecosystems

    Get PDF
    The spread of non-indigenous species (NIS) in the eastern Mediterranean Sea is an ongoing and accelerating process. Non-indigenous species are regularly reported from various coastal habitats in the eastern Mediterranean Sea but fundamental knowledge on the assemblage structure of coastal fish communities are lacking. This thesis aims to increase the knowledge on the fish assemblage structure and function of Posidonia oceanica meadows and sandy habitats in a coastal area of the eastern Mediterranean Sea and give insight into invasion biology by investigating the potential impact of introduced fish species to the local ecology and food-web of the marine systems under study. Functional and feeding guilds were developed to investigate the fish assemblage structure and function of coastal fish communities and to assess the potential role of NIS in the food web. In addition, diet nvestigations were considered important first steps in order to evaluate the potential role and impact of recently established NIS in the recipient region. During the sampling campaign two species were for the first time reported in the area. Posidonia oceanica was found to be a multifunctional habitat for fish species. It was found to be a highly important nursery habitat for several species during summer and a habitat that could under certain seasons concurrently be used by both adults and juveniles. Four functional guilds were created to describe the habitat use of P. oceanica meadows for each species encountered; juvenile migrants, seagrass residents, seasonal migrants and occasional visitors. Affinity of each species to P. oceanica was assessed in a comparison with each species distribution on open sand within the same depth range. Among the 88 species encountered, eleven were found to be non- indigenous of Indo-Pacific and Red Sea origin, three of them using segrass mainly as juveniles, and four as residents. In a comparison of fish assemblage structure between seagrass and sandy habitats quantitative sampling in combination with classification of fish species into six major feeding guilds revealed the position and contribution of non-indigenous species (NIS) in the food web of Posidonia oceanica and sandy habitats. In P. oceanica beds and on sandy bottoms 10 and five species, respectively, were non-indigenous of Indo-Pacific and Red Sea origin. The proportional contribution of NIS individuals on P. oceanica beds was lower than that of sandy bottoms (12.7 vs. 20.4 %) a pattern that also followed for biomass (13.6 vs. 23.4 %), indicating that low diverse systems may be more prone to introductions than species-rich communities. The two habitats had similar fish feeding guilds, but the biomass contribution from NIS varied within each guild, indicating different degrees of impact on the available resources. Size was considered highly important due to habitat shift of species with increased size. Two of the aspects considered in this study, the chance of establishing and the chance of being very dominant will depend upon competitive abilities strongly coupled to size and grounds for habitat shift. However, success of establishment will also depend on appropriate food resources in the recipient community as well as competitive abilities and level of competition in the food web within habitats. No support could be found for the theory that taxonomic affiliation could facilitate invasion success. The non-indigenous bluespotted cornetfish Fistularia commersonii was found to be a strictly piscivore predator and the diet consisted of 96 % by number and >99 % by weight of fish. The diet of F. commersonii was related to time of year, and fish size. Size classification and habitat of prey groups (benthic, supra-benthic, and pelagic) showed that with increased body length it extended its diet to larger prey and more generalist feeding. Fistularia commersonii was found to prey on commercial important native species (e.g. Spicara smaris, Boops boops, Mullus surmuletus) and the absence of NIS from its diet was mainly attributed to the absence of NIS with elongated body shape. The feeding ecology of two common indigenous (Sphyraena sphyraena and Sphyraena viridensis) and one abundant non-indigenous barracuda, Sphyraena chrysotaenia, of Indo-Pacific origin, was investigated. Confamilial feeding interactions was studied to investigate overlap in feeding preferences in relation to availability of prey items. Dietary analyses revealed that all three species examined were specialized piscivores with their diet consisting to more than 90 % of fish, both by number and weight. All three predators examined showed a significant selectivity towards Atherina hepsetus. Diet breadth and size of prey increased with increased body size, whereas diet overlap between indigenous and NIS decreased, attributed to increased diet breadth and specific life characteristics of indigenous species developing into larger predators extending their foraging habits. During winter, condition of the NIS was significantly lower than that of the indigenous species, indicating that winter temperature in the studied area may be a limiting factor for further population growth of this Indo-Pacific species. This study filled the gap in knowledge about the feeding preferences of the most abundant piscivorous species found on the coasts of the studied area. Additionally, congeneric affiliation of fish introductions was not found to be an important factor explaining successful establishment of NIS. The non-indigenous toxic pufferfish, Lagocephalus sceleratus, was reported for the first time in the Mediterranean in 2003 and two years later in the coastal habitats of Rhodes. The ecological and societal impact of the pest pufferfish was investigated in coastal habitats of Rhodes. Seasonal quantitative sampling in two common coastal habitats was used to investigate habitat use of different life-stages. Sandy areas were found to be highly important for the early life stages of L. sceleratus. In contrast, Posidonia oceanica habitats were mainly preferred by larger (> 29 cm) reproductive adults with a maximum recorded size of 64 cm. Lagocephalus sceleratus was fond to be an invertebrate and fish feeder while size classification revealed a tendency for an ontogenetic diet shift with increased size to a molluscivore feeding. The ontogenetic diet shift is most probably attributed to a shift in habitat use with increasing size. During early life stages L. sceleratus inhabited sandy bottoms where it fed on various invertebrates, including the genus Nassarius and Dentaliidae. The predominant molluscan species found in the diet of larger (> 20 cm) L. sceleratus individuals was Sepia officinalis while predation of Octopus vulgaris was less successful. Sepia officinalis and O. vulgaris are of economic interest in the area and the impact of L. sceleratus on local stocks of these species is discussed. Societal impacts were also evident in the area due to increased public attention concerning the lethal effects of the toxic L. sceleratus, if consumed. Seasonal variations in the condition of L. sceleratus did not show any significance and the high conditional values together with information on high numbers caught during samplings, signifies its ability to become an important member of the coastal fish community. Combined ecological, economical and social effects clearly classify L. sceleratus a pest in the area
    corecore