301 research outputs found
Determining the Physical Properties of the B Stars I. Methodology and First Results
We describe a new approach to fitting the UV-to-optical spectra of B stars to
model atmospheres and present initial results. Using a sample of lightly
reddened stars, we demonstrate that the Kurucz model atmospheres can produce
excellent fits to either combined low dispersion IUE and optical photometry or
HST FOS spectrophotometry, as long as the following conditions are fulfilled:
1) an extended grid of Kurucz models is employed,
2) the IUE NEWSIPS data are placed on the FOS absolute flux system using the
Massa & Fitzpatrick (1999) transformation, and
3) all of the model parameters and the effects of interstellar extinction are
solved for simultaneously.
When these steps are taken, the temperatures, gravities, abundances and
microturbulence velocities of lightly reddened B0-A0 V stars are determined to
high precision. We also demonstrate that the same procedure can be used to fit
the energy distributions of stars which are reddened by any UV extinction curve
which can be expressed by the Fitzpatrick & Massa (1990) parameterization
scheme.
We present an initial set of results and verify our approach through
comparisons with angular diameter measurements and the parameters derived for
an eclipsing B star binary. We demonstrate that the metallicity derived from
the ATLAS 9 fits to main sequence B stars is essentially the Fe abundance. We
find that a near zero microturbulence velocity provides the best-fit to all but
the hottest or most luminous stars (where it may become a surrogate for
atmospheric expansion), and that the use of white dwarfs to calibrate UV
spectrophotometry is valid.Comment: 17 pages, including 2 pages of Tables and 6 pages of Figures.
Astrophysical Jounral, in pres
Rare Codons Cluster
Most amino acids are encoded by more than one codon. These synonymous codons are not used with equal frequency: in every organism, some codons are used more commonly, while others are more rare. Though the encoded protein sequence is identical, selective pressures favor more common codons for enhanced translation speed and fidelity. However, rare codons persist, presumably due to neutral drift. Here, we determine whether other, unknown factors, beyond neutral drift, affect the selection and/or distribution of rare codons. We have developed a novel algorithm that evaluates the relative rareness of a nucleotide sequence used to produce a given protein sequence. We show that rare codons, rather than being randomly scattered across genes, often occur in large clusters. These clusters occur in numerous eukaryotic and prokaryotic genomes, and are not confined to unusual or rarely expressed genes: many highly expressed genes, including genes for ribosomal proteins, contain rare codon clusters. A rare codon cluster can impede ribosome translation of the rare codon sequence. These results indicate additional selective pressures govern the use of synonymous codons, and specifically that local pauses in translation can be beneficial for protein biogenesis
A statistical method to determine open cluster metallicities
The study of open cluster metallicities helps to understand the local stellar
formation and evolution throughout the Milky Way. Its metallicity gradient is
an important tracer for the Galactic formation in a global sense. Because open
clusters can be treated in a statistical way, the error of the cluster mean is
minimized. Our final goal is a semi-automatic statistical robust method to
estimate the metallicity of a statistically significant number of open clusters
based on Johnson BV data of their members, an algorithm that can easily be
extended to other photometric systems for a systematic investigation. This
method incorporates evolutionary grids for different metallicities and a
calibration of the effective temperature and luminosity. With cluster
parameters (age, reddening and distance) it is possible to estimate the
metallicity from a statistical point of view. The iterative process includes an
intrinsic consistency check of the starting input parameters and allows us to
modify them. We extensively tested the method with published data for the
Hyades and selected sixteen open clusters within 1000pc around the Sun with
available and reliable Johnson BV measurements. In addition, Berkeley 29, with
a distance of about 15kpc was chosen. For several targets we are able to
compare our result with published ones which yielded a very good coincidence
(including Berkeley 29).Comment: 14 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
Measurement of the lifetime of Pb, Pb and Pb beams at 4.2 MeV per nucleon subject to electron cooling
By measuring the lifetime of stored beams, the recombination of the ions with cooling electrons was investigated. Rates found are larger than expected for radiative electron capture and significantly higher for Pb53+ than for Pb54+ and Pb52+. These results are important for the design of the lead ion injection system for the Large Hadron Collider and for recombination theories
Abundance analysis of two late A-type stars HD 32115 and HD 37594
We have performed abundance analysis of two slowly rotating, late A-type
stars, HD 32115 (HR 1613) and HD 37594 (HR 1940), based on obtained echelle
spectra covering the spectral range 4000-9850 AAngstrom. These spectra allowed
us to identify an extensive line list for 31 chemical elements, the most
complete to date for A-type stars. Two approaches to abundance analysis were
used, namely a ``manual'' (interactive) and a semi-automatic procedure for
comparison of synthetic and observed spectra and equivalent widths. For some
elements non-LTE (NLTE) calculations were carried out and the corresponding
corrections have been applied. The abundance pattern of HD 32115 was found to
be very close to the solar abundance pattern, and thus may be used as an
abundance standard for chemical composition studies in middle and late A stars.
Further, its H-alpha line profile shows no core-to-wing anomaly like that found
for cool Ap stars and therefore also may be used as a standard in comparative
studies of the atmospheric structures of cool, slowly rotating Ap stars. HD
37594 shows a metal deficiency at the level of -0.3 dex for most elements and
triangle-like cores of spectral lines. This star most probably belongs to the
Delta Scuti group.Comment: 10 pages, 4 figure
A-star envelopes: a test of local and non-local models of convection
We present results of a fully non-local, compressible model of convection for
A-star envelopes. This model quite naturally reproduces a variety of results
from observations and numerical simulations which local models based on a
mixing length do not. Our principal results, which are for models with Teff
between 7200 K and 8500 K, are the following: First, the photospheric
velocities and filling factors are in qualitative agreement with those derived
from observations of line profiles of A-type stars. Second, the He II and H I
convection zones are separated in terms of convective flux and thermal
interaction, but joined in terms of the convective velocity field, in agreement
with numerical simulations. In addition, we attempt to quantify the amount of
overshooting in our models at the base of the He II convection zone.Comment: 5 pages with 4 figures (1a, 1b, 2 and 3), MNRAS (letter), in prin
Recent Results on Lead-Ion Accumulation in LEAR for the LHC
To prepare dense bunches of lead ions for the LHC it has been proposed to accumulate the 4.2 MeV/u linac beam in a storage ring with electron cooling. A series of experiments is being performed in the low-energy ring LEAR to test this technique. First results were already reported at the Beam Crystallisation Workshop in Erice in November 1995. Two more recent runs to complement these investigations were concerned with: further study of the beam lifetime; the dependence of the cooling time on optical settings of the storage ring and on neutralization of the electron beam; tests in view of multiturn injection. New results obtained in these two runs in December 1995 and in April 1996 will be discussed in this contribution
SPIRAL II Project (electron option) - Preliminary Design Study
This document presents a Preliminary Design Study (PDS) of the electron option of the SPIRAL II project
Generic Algorithm to Predict the Speed of Translational Elongation: Implications for Protein Biogenesis
Synonymous codon usage and variations in the level of isoaccepting tRNAs exert a powerful selective force on translation fidelity. We have developed an algorithm to evaluate the relative rate of translation which allows large-scale comparisons of the non-uniform translation rate on the protein biogenesis. Using the complete genomes of Escherichia coli and Bacillus subtilis we show that stretches of codons pairing to minor tRNAs form putative sites to locally attenuate translation; thereby the tendency is to cluster in near proximity whereas long contiguous stretches of slow-translating triplets are avoided. The presence of slow-translating segments positively correlates with the protein length irrespective of the protein abundance. The slow-translating clusters are predominantly located down-stream of the domain boundaries presumably to fine-tune translational accuracy with the folding fidelity of multidomain proteins. Translation attenuation patterns at highly structurally and functionally conserved domains are preserved across the species suggesting a concerted selective pressure on the codon selection and species-specific tRNA abundance in these regions
Effect of Correlated tRNA Abundances on Translation Errors and Evolution of Codon Usage Bias
Despite the fact that tRNA abundances are thought to play a major role in determining translation error rates, their distribution across the genetic code and the resulting implications have received little attention. In general, studies of codon usage bias (CUB) assume that codons with higher tRNA abundance have lower missense error rates. Using a model of protein translation based on tRNA competition and intra-ribosomal kinetics, we show that this assumption can be violated when tRNA abundances are positively correlated across the genetic code. Examining the distribution of tRNA abundances across 73 bacterial genomes from 20 different genera, we find a consistent positive correlation between tRNA abundances across the genetic code. This work challenges one of the fundamental assumptions made in over 30 years of research on CUB that codons with higher tRNA abundances have lower missense error rates and that missense errors are the primary selective force responsible for CUB
- …