4,972 research outputs found

    Interfering Doorway States and Giant Resonances. I: Resonance Spectrum and Multipole Strengths

    Get PDF
    A phenomenological schematic model of multipole giant resonances (GR) is considered which treats the external interaction via common decay channels on the same footing as the coherent part of the internal residual interaction. The damping due to the coupling to the sea of complicated states is neglected. As a result, the formation of GR is governed by the interplay and competition of two kinds of collectivity, the internal and the external one. The mixing of the doorway components of a GR due to the external interaction influences significantly their multipole strengths, widths and positions in energy. In particular, a narrow resonance state with an appreciable multipole strength is formed when the doorway components strongly overlap.Comment: 20 pages, LaTeX, 3 ps-figures, to appear in PRC (July 1997

    Editorial : environmental governance of urban and regional development – scales and sectors, conflict and cooperation

    Get PDF
    Recent years have continued to see a concern for the detrimental environmental impacts of human economic activities particularly in the form of enhanced global warming, sea level rise, land degradation and deforestation. Although it can be argued that economic development and growth remain the priority for governments at a variety of spatial scales or levels, these same governments also express a desire through a growing number of policy initiatives to make such development more sustainable and environmentally-friendly. A growing interest amongst policy makers has been in identifying the ways in which environmental protection measures can be made complementary to economic development aims. Rather than seeing the environment and the economy in opposition, there has been a focus on the growth potential from developing a green or low-carbon economy (OECD, 2011). At the urban and regional scale governments have increasingly begun to try and position themselves as destinations for new forms of green economy investments as a source of a new round of capital accumulation (GIBBS and O’NEILL, 2014). In total then, questions around the environment, climate change and sustainability look set to grow in importance for decision makers in cities and regions

    Ground State Correlations in 16O and 40Ca

    Full text link
    We study the ground state properties of doubly closed shell nuclei 16^{16}O and 40^{40}Ca in the framework of Correlated Basis Function theory using state dependent correlations, with central and tensor components. The realistic Argonne v14v_{14} and v8v'_{8} two-nucleon potentials and three-nucleon potentials of the Urbana class have been adopted. By means of the Fermi Hypernetted Chain integral equations, in conjunction with the Single Operator Chain approximation, we evaluate the ground state energy, one- and two-body densities and electromagnetic and spin static responses for both nuclei. In 16^{16}O we compare our results with the available Monte Carlo and Coupled Cluster ones and find a satisfying agreement. As in the nuclear matter case with similar interactions and wave functions, the nuclei result under-bound by 2--3 MeV/A.Comment: 33 RevTeX pages + 8 figures, to appear in Phys.Rev.

    The Role of Final State Interactions in Quasielastic 56^{56}Fe(e,e)(e,e') Reactions at large q|\vec q|

    Full text link
    A relativistic finite nucleus calculation using a Dirac optical potential is used to investigate the importance of final state interactions [FSI] at large momentum transfers in inclusive quasielastic electronuclear reactions. The optical potential is derived from first-order multiple scattering theory and then is used to calculate the FSI in a nonspectral Green's function doorway approach. At intermediate momentum transfers excellent predictions of the quasielastic 56^{56}Fe(e,e)(e,e') experimental data for the longitudinal response function are obtained. In comparisons with recent measurements at q=1.14|{\vec q|}=1.14~GeV/c the theoretical calculations of RLR_L give good agreement for the quasielastic peak shape and amplitude, but place the position of the peak at an energy transfer of about 4040~MeV higher than the data.Comment: 13 pages typeset using revtex 3.0 with 6 postscript figures in accompanying uuencoded file; submitted to Phys. Rev.

    Thermodynamic Geometry and Phase Transitions in Kerr-Newman-AdS Black Holes

    Full text link
    We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two "mixed" ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system.Comment: 1 + 41 pages, LaTeX, 46 figures. Discussions, clarifications and references adde

    One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca

    Get PDF
    The one body density matrix, momentum distribution, natural orbits and quasi hole states of 16O and 40Ca are analyzed in the framework of the correlated basis function theory using state dependent correlations with central and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are employed to sum cluster diagrams at all orders. The optimal trial wave function is determined by means of the variational principle and the realistic Argonne v8' two-nucleon and Urbana IX three-nucleon interactions. The correlated momentum distributions are in good agreement with the available variational Monte Carlo results and show the well known enhancement at large momentum values with respect to the independent particle model. Diagonalization of the density matrix provides the natural orbits and their occupation numbers. Correlations deplete the occupation number of the first natural orbitals by more than 10%. The first following ones result instead occupied by a few percent. Jastrow correlations lower the spectroscopic factors of the valence states by a few percent (~1-3%) and an additional ~8-12% depletion is provided by tensor correlations. It is confirmed that short range correlations do not explain the spectroscopic factors extracted from (e,e'p) experiments. 2h-1p perturbative corrections in the correlated basis are expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.

    Derivative-Coupling Models and the Nuclear-Matter Equation of State

    Get PDF
    The equation of state of saturated nuclear matter is derived using two different derivative-coupling Lagrangians. We show that both descriptions are equivalent and can be obtained from the sigma-omega model through an appropriate rescaling of the coupling constants. We introduce generalized forms of this rescaling to study the correlations amongst observables in infinite nuclear matter, in particular, the compressibility and the effective nucleon mass.Comment: 16 pages, 6 figures, 36 kbytes. To appear in Zeit. f. Phys. A (Hadrons and Nuclei

    "Clone Wars": Episode II - The Next Generation: The Copyright Implications relating to 3D Printing and Computer-Aided Design (CAD) Files

    Get PDF
    The future market potential of 3D printing will rest on the dissemination of Computer Aided Design (CAD) files. Without clear instructions from a CAD file, a 3D printer will not function. In fact, “a 3D printer without an attached computer and a good design file is as useless as an iPod without music”. The importance of CAD-based design files, therefore, cannot be underestimated. Drawing on UK and EU copyright laws and their application to 3D printing and CAD files, this paper will, first, question whether CAD files can be protected by copyright law before considering the copyright implications thrown up by the modification of CAD files as a result of scanning and the use of online tools. Highlighting some of the challenges for rights holders and users existent in the present law the paper advocates new business models over a premature call for stringent intellectual property laws before concluding with some recommendations for the future

    Experimental delayed-choice entanglement swapping

    Full text link
    Motivated by the question, which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be "produced a posteriori, after the entangled particles have been measured and may no longer exist". In this work we report the first realization of Peres' gedanken experiment. Using four photons, we can actively delay the choice of measurement-implemented via a high-speed tunable bipartite state analyzer and a quantum random number generator-on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one definite of two mutually exclusive quantum states in which either the photons are entangled (quantum correlations) or separable (classical correlations). This can also be viewed as "quantum steering into the past"
    corecore