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Abstract 

Using a phenomenological schematic model of multipole giant resonances we con- 
sider the effects of overlapping of their doorway components. The concept of the 
partial widths of a giant resonance becomes ambiguous when the escape widths get 
comparable with the spacings between the components. In such a case, the partial 
widths determined in terms of the K- and S-matrices differ from each other. The mix- 
ing of the doorway components due to the interaction via the common decay channels 
influences significantly their multipole strengths, widths and positions in energy. 



~ 1 Introduction 
In spite of much efforts, the nature of giant resonances (GR) is only partly understood 
nowadays. Commonly accepted is that they are collective excitations formed by coherent 
superpositions of many correlated predominantly one particle - one hole configurations with 
given total quantum numbers. These superpositions are usually found by diagonalizing the 
residual interaction in the lp- l h  configuration space in the framework of the random Phase 
(RPA) or Tamm-Dancoff (TDA) approximations. But their detailed microscopic structure 
still needs further investigation. 

The recent Progress of high energy accelerators and high precision detectors gives the 
possibility to analyse in coincident experiments [I, 2, 3, 4, 51 the direct particle decays of 
the giant resonance states into specific channels. The decay rates extracted from the data 
contain the desired microscopic information. They are therefore a very useful tool for a 
careful study of the collective modes of nuclear motion. 

At  the GR energies, the value which is typical for the escape widths of the configura- 
tions contributing to the collective mode exceeds usually their level spacings. The energy 
continuurn effects play therefore an irnportant role and cannot be trcated as a perturbation 
slightly broadening the levels which, nevertheless, remain isolated. A few methods exist 
to take into account the energy continuum in a straightfarward manner. Some of them 
[6, 7, 8, 9, 10, 111 extend the RPA by including exactly the single particle continuum. Thc 
more general approach [12, 13, 14, 151 based on the explicit Separation of thc intri~isic and 
channel subspaces is closely related to Feshbach7s idea of doorway states [16] which we 
exploit in the present paper. 

Generally, a giant resonance consists of one or a few doorway statcs on the background 
of many complicated fine structure states. Even when within the RPA the corresponding 
doorway states are well isolated from one another, their overlapping with the background 
states can give rise to interference effects [17, 181 which cannot be described by a sum of 
independent Breit-Wigner contributions. However, due to the nearly chaotic structure of 
the background states, the main effect is [19, 20, 211, after energy averaging, the damping 
of the doorway states described by the spreading width. In contrast, the interference of 
the overlapping doorway states with each other may significantly influence the form of the 
energy spectrum of the decay products of giant resonances as shown in [19, 201. 

The interference of doorway components of a GR poses, in particular, the question on 
the physical meaning of its partial widths [22, 231. It is impossible to separate the contri- 
butions from different non-orthogonal [24] overlapping doorway components into a specific 
decay channel. The partial widths lose, in such a situation, their Standard probabilistic 
interpretation. More than that, in contrast to the case of isolated resonances, one must 
distinguish the "partial widths" determined in terms of the hermitian I<-matrix from tliose 
defined by means of the unitary S-matrix whcn the resonances overlap. 

In this paper, we investigate the interference effects caused by the overlapping of doorway 
states in the case of giant resonances. We use the extensiori, proposed in [19], of tlie simple 
Brown-Bolsterli [25j schcmatic model for multipole collective nuclear excitations to Open 
(decaying) systerns. Although being thjs phenornenological rnodel still maintains 
the main features of the real situation. The giant resonances emerge out of the interplay 
between two different kiads of collective bbeaviour: the ~~nchroriized collective iritrinsic 
motion arid the cooperative particle eniission. 

In sect. 2 thc formalisrn .rve usc is brieffy describcd which is based on the gcrieral theory 
of resonance scatteririg. T h  differcricc betrveen Ii" (KI'W) and T matrix (TP14') partial 



widths is stressed. Further, the integral sum rules for the cross sections of the decay into 
specific channels are given. Our schematic model along with its formal solution are presented 
in sect. 3. The two kinds of collectivity appearing in the I{- and S-matrix calculations are 
analysed analytically in sects. 4 and 5. Also the connection between the resonance spectrum 
and the multipole strengths of the doorway states is established. The transition strengths 
are essentially redistributed between the overlapping doormay states when the interaction 
via the energy continuum is strong. In Sect. 6, we show numerical results obtained in the 
Same model with and without the restrictions introduced into the analytical study. The 
results confirm the main features of the interference picture. At strong external coupling, 
they can be understood in the two-level approximation. In the last section, some conclusions 
are drawn from the results obtained. The influence onto the cross section pattern will be 
studied in a forthcoming paper. 

We use the matrix shorthands throughout the paper. The capital letters are used for 
matrices in the Hilbert space of the internal motion; matrices in the space of the scattering 
channels are marked by the hat symbol. The column vectors in the internal space as well 
as the row vectors in the channel one are represented by bold letters. 

2 General Forrnalism 

In the vicinity of each doorway component (dw) of a GR the transition rnatrix T(E) ' 1s usu- 
ally parametrized in the frameworlc of thc random phasc approximation with the standard 
single-resonance Breit-Wigner formula 

Here, the row vector Adw is composed of the k real decay amplitudes A:, of the doorway 
state into the individual channels c = 1,2, ..., L. The superscript T means transposition. 
Contrary to the matrix ?(E) which possesses the pole E = &dw = Edw - i r d w  in the complex 
energy plane, the pole of the hermitian matrix 

lies on the real energy axis at the energy Edw of the resonance state. Thc corresponding 
residues are however the same for both matrices. The residues I';, = of the diagonal 
elements of these matrices are the partial escape widths of the state dw rclative to the 
channels C. The hermiticity of the K-matrix automatically provides the unitarity of the 
scattering matrix .!?(E) = I - iT(E) implying the well known conncction 

bctween the total, rdw, and thc partial widtlis of the rcsonance du;. In what follows wc otnit 
all nonresonant cffects. They can, if neccssary, bc easily taken into aeco~irit by standard 
met hods. 

Using the parametrization (XI), thc partial rvidths of ehe resonaricc s t a k  can be ea- 
tractcd from the cxperimcntal data. Avcraging thc cross scction of thc rcactio~i C' + c owr 



all initial channels C', one obtains, with the help of the unitarity condition, the strength 

of the transition into the channel C. The first two factors describe the cross section of the 
doorway state excitation. Below we set the factor a o  to unity measuring all cross sections 
in units of this quantity. The maximal value 

of the transition strength (2.4) is proportional to the branching ratio corresponding to the 
decay in the channel C. The integration over the whole resonance region gives the partial 
width itself, 

00 L dE ac(E) = I?:, . (2.6) 

The above discussion implies a good separation of the different resonance states dw so 
that any interference between them can be neglected. A more careful analysis is however 
needed when the widths of the relevant doorway states become comparable with their spac- 
ings. In this case one has to use the formulae of the general theory of resonance reactions 
[26, 27, 28, 291. Here, the transition matrix 

is composed of the three matrix factors which describe the formation of the intermediate 
unstable system, i ts propogation and subsequent desintegration. If there are N d ,  doorway 
resonance states near the excitation energy E coupled to k decay channels, the matrix A 
consists of k Nd,-dimensional column vectors Ac connecting all internal states with each 
channel C. These vectors are real because of time-reversal invariance. In the following we 
neglect a possible smooth energy dependence of the components A7, over the whole energy 
domain considered. The validity of such an assumption is not always obvious and deserves 
a special consideration. It may lead to further complications. 

The evolution of the intermediate Open system is described by the Green's matrix 

corresponding to the non-hermitian effective Hamiltonian 

Its antihermitian part 

originates from the on-shell self-energy contributions of the decays. The factorized form 
(2.10) of the interaction via the coritinuum ensures the unitarity of the scattering matrix for 
arbitrarily overlapping resonances [28, 291. I-Iowevcr, thc simple Breit-Wigner parametriza- 
tion (2.1) loses its validity in general. 



The propagator C ( E )  of the unstable System satisfies the Dyson equation 

where 
1 

G ( E )  = - 
E - H  (2.12) 

is the resolvent of the hermitian part H of the effective Hamiltonian (2.9). Subsequent 
iterations in the antihermitian part of the effective Hamiltonian lead to 

by using the factorized form (2.10) [30]. Now 

1 R(E)  = AT -- A = AT G ( E )  A . 
E - H  

The relation (2.13) casts the transition matrix (2.7) into the explicitly unitary form 

The elements of both the Ii'- and T- channel space matrices are presented by 

as the matrix traces in the Hilbert space of the internal motion. Therefore, they are invari- 
ant with respect to any equivalency transformation of this space. These transformations 
connect different parametrizations of the reaction amplitudes. The concrete choice of thc 
parametrization is dictated by physical reasons as well as by convenience. For iristance, one 
can use the eigenbasis of the hermitian part H of the effective Hamiltonian (2.9) to represent 
the K-matrix as the sum 

A+ Ar 
@E)  = E - (2.18) 

E - Er 

over the internal states T corresponding to all N overlapping resonances. Each term of 
this sum is directly analogous to the single-resonance expression (2.2). The row vectors AT 
consist of the real components 

,q = @('I . AC (2.19) 

where the eigenvector @('I of thc hcrmitian matrix II bclongs to thc eigenenergy E,. Tlie 
positive residucs 

r; = (n;12 (2.20) 

at the poles of thc diagonal elernents of thc matrix (2.18) m q  bc callcd thc I{-rristrix partial 
widths (IWW). They characterize thc coupling of thc internal statcs + ( T )  to thc coritiriiiiirn. 
It must bc strcssed however that, contrary to the casc of isoiatcd rcssrinnces, they diffcr 
from the residucs a t  Ihe poles of the rriatrix ?(E)  whcri thc rcsoriances overlnp. 



The pole (resonance) parametrization of the transition matrix (2.7), 

is achieved by diagonalizing the total effective Hamiltonian (2.9) with the help of a trans- 
formation !P mhich is complex since the Hamiltonian IFI is not hermitian. Its complex 
eigenvalues 

i 
Edw = Edw - - r d w  2 

(2.22) 

determine the energies and total widths of the overlapping resonance states. The decay 
amplitudes of these states are (compare with (2.19)) 

with 9(dw) being the eigenvectors of the effective Hamiltonian 3-1. Together with these 
eigenvectors, the residues at the resonance poles are also complex. Therefore, the resonances 
are mixed with nonzero relative phases. In particular, the rcsidues are equal to 

in the elastic scattering amplitudes. I-Iere, the resonance mixing phases $2, are introduced. 
The quantities 

Pdw = lAdw12 (2.25) 

are usually interpreted as the partial widths of the resonance states &W. In analogy with 
(2.20) we will refer to them as the T-matrix partial widths (TPW). 

The transformation matrix @ satisfies the matrix equation 

where E is the diagonal matrix of resonance energies Edw. This transformation is complex 
orthogonal [3O], 

!PT@= 9qT = 1 .  (2.27) 

However, for the hermitian matrix 
u = @+!P 

the inequality U # I holds so that the overlapping resonance states are not orthogonal (for 
illustration See [31]). The matrix U appears in the tvell-known Bell-Steinberger relation [24]1 
(see also a compact matrix version of this relation in [30]) 

Its diagonal part givcs the relation 

between the total widtiis arid TPW (2.25). Bcre 



is the corresponding diagonal matrix element of the matrix U. 
Because of eqs. (2.30) and (2.31), the inequality condition 

holds in contrast to the equality (2.3) characteristic for an isolated resonance. 
As it follows from eq. (2.30), the TPW can be renormalized as 

[32, 311 leading to the equality 

also for overlapping resonances. It should be emphasized however that neither the I':, nor 
the renormalized quantities Tzw coincide with the KPW rz from eq. (2.20) in the case of 
overlapping resonances. The only relation between them, 

folkows from the completeness of the sets of the corresporiding eigenvectors. Similarly, the 
energies eT differ from the energies Edw of thc resonance eigenstates. Ir1 the second equality 
(2.35) additional phase factors appear in the sum over the resonance states. The imaginary 
part of this sum vanishes since the contributions of different resonances pcrfectly cornpensate 
one another. 

The condition (2.35) results in the integral sum rule 

instead of eq. (2.6) for an isolated resonance. The integration is extended hcre over the 
whole energy region, occupied by the overlapping resonance states. It lcads to the sum of 
the KPW I':, (2.20), rather than to the sum of the TPW rdw, (2.25). Therefore, one cannot 
learn much on the latter or even on their sum Cdw Gw from the integral (2.36) despite of 
the expectation sometimes being expressed in the scientific literature. Still less information 
can be drawn from the maxima of the total Cross section since their heights and positions are 
connected with the widths and energies of the overlapping resonances in a very complicated 
way. 

A useful generalization of the sum rule (2.36) reads 

In this relation thc k X k rnatrix [33,30] 

of the scalar products of the real amplitude vectors AC appears. \i'c will iise tliis niittrix in  
the following sections. 



3 The Model 
As usual (see for example [27]), we suggest that a hierarchy of complexities of the internal 
states of the System under consideration exists. The first class contains the simplest states 
presumably of l p  - 1 h nature which are directly connected to the continuum by appreciable 
transition matrix elements Ai.  The states of the other classes of complexity have no direct 
connection to  the continuum, at least to the Same set of channel states as the first class. 
They can decay into these channels only through the states of the first class if they are 
connected to  them by some residual internal interaction. 

In this Paper, we restrict ourselves mainly to the consideration of the dynamics in the 
subspace of the states of the class 1. In our schematic model, the hermitian part 

of the effective Hamiltonian (2.9) is chosen to be equal to that in the pioneering work by 
Brown and Bolsterli [25]. It consists of the unperturbed part Ho containing N discrete 
intrinsic levels e,(n = 1,2, ..., N), and of the factorized residual internal interaction of, let 
us say, dipole-dipole type. Adding to H the external intcraction (2.10) via common decay 
channels, we get the effectivc Hamiltonian 

which is the many-channel version of the effective Ilaniiltoriian corisidered in rcf. [19]. 
Having omitted the coupling to the sea of more complicated states, we rieglect in particular 
the damping arid spreading widths of the collective exitations formed by superpositions of 
the states of the class 1. They can be taken into account in a next step by using statistical 
methods (see subsection 6.3). 

The resonance spectrum of the model is given by the secular equation in the complex 
energy plane 

1 
Det (E - H) = Det (E - X,) (3-3) 

where Go(E) = (E - Ho)-' is the Green's matrix describing the unperturbed intrinsic 
motion and ko(~) = ATGo(E)A is the I{-matrix without internal residual interaction. We 
liave used in eq. (3.3) thc factorized structure DDT of this interaction and in eq. (3.4) 
the relation (2.13). Thc last term on the 1.h.s. of the second linc of eq. (3.4) describec 
the infiucnce of the external intcraction via the continuum onto thc cnergy spcctrum of the 
internal motion. This cquation can easily be reduced to an algebraic cquation of the ordcr 
hr producing the N cornplcx cncrgics of the rcsonance statcs. 

In a simiIar mariner wc obtain 



Together with the expression (2.13) for the reaction matrix P(E) ,  the eqs. (3.4) and (3.5) 
present the explicit solution of our model. In the following we investigate this solution 
anal~tically as well as numerically. 

Before finishing this section, let us consider the limit of a very strong internal interaction 
(see below for the explicit condition). It is well known that such an interaction leads to 
the creation of a collective vibration mode which is shifted in energy from the location 
of the original unperturbed (parental) levels by a distance of the order of magnitude of 
T T ( D D ~ )  = D'. Characterizing this location by some average position eo = (e), we find 
the complex energy 

of the isolated giant resonance state from the secular equation (3.4). In this limit, the K- 
matrix (3.5) simplifies to the expression (2.2) and the transition matrix (2.15) acquires the 
standard Breit-Wigner form (2.1). The partial widths 

of the giant resonance (3.6) are determined by the projections 

2 
of the decay amplitudes AC onto the unit dipole vector d = D / f i  . Tlicse projectioris arc 
the components of the row vector ~ d .  

Generally, eqs. (3.5,2.15) lead hotvever to a more coniplicated energy dependence of the 
Cross section as that described by (2.1) because of the interfererice of the resonancc states. 
In the following we investigate this behaviour in detail. 

4 Collective Phenornena 

It is convenient to treat the factorized internal residual interaction DDT forrnally in the 
same manner as the external one introducing an additional irnaginary "chan~iel'~ with the 
"decay amplitudes" A0 D. Defining the new matrix 

we will consider the following two matrices in the cnlarged channel space: 

Besides the k x k blocks I?(E) and T(E) along the main diiig~rials~ thcise ~natriccs coritain 
additionally the following furictioris: 



respectively in their upper left Corners. The function P(E)  carries information on the degree 
of collectivity of the internal motion whereas P ( E )  describes the interplay of both kinds of 
the collective behaviour. These functions are closely connected to the photoemission. The 
exact solution (2.15, 3.5) can now be compressed in the very compact expression 

in terms of the amplitudes (4.1). 

The degree of collectivity of an internal state described by the eigenvcctor of the hcr- 
mitian part H of the effective Hamiltonian (3.2) is characterized by thc residue . D)' 
of the function P(E) eq. (4.4) at its pole at thc energy E = E,. 'Lo estimatc this degrce, 
let us note first that the collectivity can become appreciable only if the internal interaction 
is sufficiently strorig and dominates the internal dynamics. Urider such a co~idition i t is 
natural to start with the diagonalization of the interaction riiatrix DDT. I3ocause of its 
factorized structurc, this rnatrix posscsscs the only nonzcro cigcrivnluc D2 Idelo~iging to tho 
cigenvector 

Y(') = d = ~ / m .  (4.7) 

The rest of the eigcnstatcs Y("), /L = 2,3, ..., N rernains arbitrary bccaiise of the degeneracy 
of the zero eigezivalue. These statcs spar1 a basis in thc ( N  - 1)-dirncrisional subspace 
orthogonal to  the vector d. PVe will fix this basis a little bit later. 

In the new basis the function P ( E )  reduces to 

P (E)  = Tr ( - DDT) = D'C„,(E) 
E - H  

where Gmu(E) is the upper diagonal matrix element of the internal Green's rnatrix. The 
Hamiltonian matrix H looks as follows: 

Here the energy 
~,,-&dz = (e )  (4.10) 

is the weighted rncan position of the parental levels e,. The (N - 1)-dirncnsional vector h 
has the components 

while the rnatrix clements of the (iV - 1) X (N - 1) submatrix fi are cqual to 

Rcpresentirig similar to (4.9) the rcsolvent G(E)  as 



one finds 
1 
1 

Gcou(E) = E - E , , - D ~ - ~ T I _ = ~  
E-H 

when 
1 
1 

F(E)  = - - h  Gcou(E) 
E - H  

and - 1 1 
G ( E )  = - + - 1 

hhT  - 
E - H  E - H  E - H  Gcoll(E) . 

Each eigenvalue E,  of the Hamiltonian H satisfies the equation 

1  
x ( E ) = E - E ~ - D ~ - ~ ~ -  - h = o  

E - H  

and the value 

subject to the condition 

describes the part of the dipole strength carried by the eigenstate @('I. 
Further, we diagonalize the submatrix (4.12), 

by choosing the till now uns~ecified basic vectors Y(,) to coincide with its eigenvectors. 
Using the completeness condition 

one easily obtains 

The matrix elements h, play the role of the normalization coefficients of the eigenvectors 
and are equal to 

The orthogonality condition d . Y(") = 0 immediately leads to thc equation 

for the eigenvalue spectrum of the submatrix fi. Obviously, each oigcnvalue E, lies bctwecri 
two neighboring parental lcvels e.  Therefore, thc lcvels E arc shiftcd, with respcct, to thc 
original oncs, by distances of thc order af magnitudc of tlic ii~ipcrtiirbcd Iticari level spaning. 



This is much smaller than the energy shift D 2  of the collective level in the upper Corner 
of the Hamiltonian matrix (4.9). 

The collective level Ecorr = EO + D2 is mixed with the N - 1 levels g, via the matrix 
elements h,. The Square length of the vector h turns out to be equal to the variante 

of the distribution of the parental levels. This leads to the estimation (h,l N n , /JRN- l  

of the individual matrix elements. Therefore, the mixing is governed by the parameter 
x = A,/D2. Suggesting that this parameter is small, K -=C 1, one can use the standard 
perturbation expansion which gives 

for the levels and 
1 2 K 

f = 1 - K ,  f 7 m -  
N - 1  ( r  # 1) 

for the dipole strengths. The first level accurnulates the lionls sharc of both the total dipole 
strength and the energy displacement. In the limit K -+ 0 the collectivity of the first level 
becomes perfect while thc rest of thc levels carries no collcctivity at all. 

4.2 External Collectivity 
Let us now turn to the properties of the K-matrix eq. (3.5) in our model. In the abserice 
OE the internal interaction the KPW would be equal to the Squares (A:)' of the original 
amplitudes. However, the strong internal interaction causes a remarkable redistribution of 
these widths. In this case, the T-basis (4.7,4.22) constructed above becomes a preferential 
one. Taking into account eqs. (4.15,4.16) one gets in this basis 

1 T 1 + hT - AL]  [bd + hT Gc0ll(E) + AT 
f -  

Al . (4.25) 
E - f i  E - H  

The rectangular submatrix AL is composed of (N - 1)-dimensional column vectors AT 
orthogonal to the dipole vector, 

whereas the row vector ~d of the longitudinal components Ad is defined in (3.8). It  can 
easily be checked that thc contributions of the poles at the energics E = E", in the two terms 
on the r.h.s. perfectly cancel each othcr. The actual poles of the K-matrix are given by the 
roots of thc equation (4.17). 

It imrnediatcly follows from (4.28) that the KPW are equal to 



and depend on the relative strength n of the residual mixing. In particular, by using 
condition (4.21) one finds 

for the collective level if K < 1. 
In the Square bracket of eq. (4.30) the first term dominates for the collective level r = 1 

as long as IAzl/lA;I K. Therefore, I'; (4)' under such a condition. The remaining 
part ( ~ 1 ) ~  is distributed over the N - 1 levels lying in the energy interval A, around the 
point eo. In this region the pattern turns out to depend crucially on the ratio (A;)~ /A$ 
Each state acquires the partial width ( ~ 1 ) ~  / (N - 1) if this ratio is small while a strong 
redistribution of the widths occurs in the opposite case ( ~ 1 ) ~  /A: > 1. It is called "width 
collectivization77 [34, 30, 351 or "trapping effect" [36, 37, 38, 39, 40, 411: k eigenstates @('I 
get large components along the vector A l  and accumulate almost tlie total value (See 
also [42, 43, 441). This phenomenon was first observed in realistic numerical simulations of 
nuclear reactions in [45,46,47]. In the limit n = 0, when the internal collcctivity is maximal, 
the expression (4.28) reduces to 

I-Iere the matrix 
- T A  2 1 = ~ - ~ d ~ d = ~ l ~ l  

is composed of the scalar products ( A t .  A l )  in the orthogorial sukspüce (compare with cq. 
(2.38)). 

One can immediately See from eq. (4.32) that the KPW of tlie only collective s t a k  with 
the energy ecoil = eo + D2 is equal to: 

in agreement with eq. (3.7). However, as it follows from the general considcration given 
in section 2 (see also below), the TPW does not coincide with thc KPW if the collectivc 
state overlaps the states jointly presented in the given limit by the Single pole at the eriergy 
E = €0. 

The residues at the pole EO of the matrix (4.32) do not factorize contrary to that at the 
collective pole. This means that different linear superpositions of the original states are 
excited via different channels at the Same energy CO. To find their KPW, one ltas first to 
diagonalize the matrix ;YL. The corresponding partial widths are then cxpressed as 

in terms of the eigenvalues y; and the left eigenvectors of tiic rnatrix AL. One sees that 
in the considered limit of very streng iriternal collcctivity orily k supcrpositions out of thc 
N - 1 ones with the energy CO possess norizero MI'LV. Thcy sbsorb thc part 



5 Interplay of Two Kinds of Collectivity. Interfer- 
ence of Doorway Resonances 

5.1 The Doorway Basis 
Now we turn to  the matrix ?(E) containing both kinds of collectivity on equal footing. 
Since the interaction plays the dominant role in the dynamics studied, we start with the 
consideration of the interaction matrix 

The manifold of the k + 1 linearly independent vectors D and AC forms a (k + 1)-dimensional 
subspace in the internal Hilbert space the total dimension of which is N. It is convenient 
to choose the first k + 1 basis vectors of the total Hilbert space in such a mariner that they 
belong entirely to this subspace. Then only the upper left (k + 1) X (k + 1) block of the 
interaction matrix will contain non-zero matrix elements. PVe proceed in the following three 
steps: 

(i) Let us first orthogonalize the set of the k vectors AC. 170r this purpose, we diagonalizc 
tlie matrix 2, eq. (2.38), of the scalar products of thcse vectors. Let i be the matrix of the 
(left) eigenvectors, 

ix = ri (5-2) 

where 
j = diag (-yl -y2 . . . - y k )  

is the diagonal matrix of the eigenvalues. It is then obvious that tthe rectarigular matrix 

consists of k mutually orthogonal unit vectors 

Adding to this set an extra unit vector a0 which is orthogonal to all of them, one obtains 
a new basis in the non-trivial part of the total Hilbert space. One can easily see that the 
vectors aO, aC are just the eigenvectors of the antihermitian part W = A AT. Therefore, this 
matrix becomes diagonal, 

W = diag (0 j) . (5.6) 

Its nonzero eigenvalues yC coincide with those of the matrix k [34, 301. For the present, 
we drop the matrix blocks and the vector components which belong to the complementary 
(N - (L + 1))-dimensional subspace arid consist of Zero elernents. 

In the chosen basis the unit dipole vector d has the components 

C 

'flere we have introduced the angle 0, (0 5 O 5 7i/2), between the dipole vector D arid 
ttic L-dimensional stibspace spctnned by the dccay vectors AC. Tliis angle is an irriportarit 
pararneter which gsverns the iriterferencc effccts under consideratiori. 



The matrix of the internal interaction reads 

D2 ( sin20 sinO cosO lT ) 
sinO COSO 1 COS' O 1 lT 

where 1 stands for the unit vector with the components I, = cosy,. 
(ii) Next we diagonalize the k X k submatrix 1 lT with the help of a k-dimensional orthog- 

onal matrix 6 the first column of which coincides tvith the vector 1. This transforrnation 
resembles that described in subsection 4.1. 

Now only two nonzero components of the unit dipole vector d are left which are equal 
to 

do = sinO , di = cosO , (5.9) 

and only the 2 X 2 upper block of the internal interaction matrix (5.8) remains non-trivial. 
The vectors AC are transformed into 

so that 

c1 

when the lower diagonal subrriatrix 9 in eq. (5.6) is rcplaccd by 

and 

(iii). Returning now into the total N-dimensional Rilbert space, the t~vo consecutive 
transformations just described are part of the global transforrnation produced by the or- 
thogonal matrix 

In (5.15), the two groups of vectors, thc !V-(k+l) vcctors G!(k+15"sJv-1) in the £1111 spacc arid 
the k - 1 ones 11(25~="5k) in the k + 1 - dimet~sional subspace, cari still bc chosen arbitrnrily. 
We will fix them latcr. 

In the G!-basis, tlic diagonal matrix clcmcnts of ttic iinpcrturbcd flamiltonian Ilo arc 
given by the weighted trieari positions 



when the off-diagonal elements 

obey the general sum rules 

(compare with eq. (4.25)). Since we do not expect any special relation between the original 
basis and the doorway one, all off-diagonal matrix elements are suggested to be of the samc 
order of magnitude. This leads to the estimation 

similar to that found in subsection 4.1. 
We now use the last N - (k + 1) vectors S2(') , (s G tr = /c + 1, k + 2, ..., N - 1) in (5.15) 

in order to diagonalize the lower block of the unperturbed IIarniltoriian [30, 357, 

The Nt, = N - k - 1 cigcnstates with thc energies .EtT (which lic witliin thc original cnergy 
region A, 1351) are "trapped" [47, 34, 421, i.c. they do not have a dircct access to the 
continuum. These statcs can decay only via thc first Ndw = k + 1 doorway statcs duc to 
the hermitian residual intcraction 

which appears from the initial unperturbcd hamiltonian being transformed into the doorway 
basis. 

A typical value for the widths of the doorway states is (7) N T r  W - ((A')'). Only 
one of them can, under certain conditions, become almost stable (see subsection 5.2) but 
thcn it is displaced by a distance W D2. Therefore, the admixture of all the trapped states 
to the Nd, doorway states is small as one of the ratios 

According to the estimation (5.19) the trapped states acquire tlic widths - % ~ ' ~ ( - y ) .  
The energy shifts of the trapped states are of the same order of magnitude. These states 
are responsible therefore for the fine structure effects (with the characteristic energy scale 
A , / ( N t , ) )  in the energy domain of thc parental Ievels. Thcy bccome irrelevant when 
(& , &I) + 0. 

The doorway A(lw X Nd„ part of thc effective IIamiltoniari 

includcs two different blocks along thc rnain diagonal. Only the uppcr 2 X 2 block 



contains, along with the collectivity via the continuum, the collective effects induced by 
the internal residual interaction. Due to the mixing described by the off-diagonal matrix 
elements, the widths, energy shifts and dipole strengths of the two eigenstates of this block 
are generally comparable to each other provided that the angle 0 differs from 0 and x/2 so 
that s in20 cos20. 

The (k - 1) X (k - 1) block 

(see eq. (5.14) for the antihermitian part) describes the states without both dipole strengths 
(according to (5.9)) and collective energy shifts. They are, generally, strongly mixed with 
one another. The set of vectors can be used to diagonalize either the hermitian or the 
antihermitian part of depending on which of them dominates the dynamics inside this 
block. The remaining part may then be treated as a weak perturbation. When however both, 
the hermitian and the antihermitian parts, are of equal importance the full EIarniltonian f i  
must be diagonalized. 

The two doorway blocks just dcscribed arc couplcd by thc complex interaction 

v(0) G VOa , z p  &(. , da) = X yC cosyC qC ((.I . (5.27) 
C 

The influence of thc hermitian Part is weak as r c 2 ,  d2 again. The strcngth of thc antihermi- 
tian coupling can be estimated by using the identity 

which is the counterpart of the eq. (4.25). 

5.2 Resonance Spectrum and Dipole Strengths 
of Doorway States 

The interaction W of the resonance states via the continuum causcs a strong redictribution 
of the dipole strength when the doorway states overlap. One may try, sirnilar to  cq. (4.18), 
to use the residues ( d .  of the functioii P ( E ) ,  eq. (4.5), as a rneasure of the dipole 
strengths of the individual resonance states. These residues are howcver complex. Thcrefore, 
although they satisfy thcmselves the conditiori (4.19), thcir rnoduli can bc arbitrarily large. 
It  is natural and appropriate to  &end thc definition of thc dipole strength f' of the interiial 
s t a k  @('I to that of the unstable statc !P(") in the followirig rnanncr (compare with (2.30)) 



hermitian conjugate of the relation thus received, one obtains 

where E, is the resonance energy. 
In the doorway basis introduced in subsection 5.1, the upper Ndw X Nd, block of the 

effective Hamiltonian is totally decoupled from the lower block of the trapped states if 
one neglects the small matrix elements (5.21) the contributions of which are of tlie order 
of magnitude tc2 or d2. Omitting them, one neglects the finc structure variations of the 
transition amplitudes in the energy domain of the parental levels as mcritioned above (sec. 
5.1). In such an approximation, the trapped states remain stable and arc eritirely excludcd 
from all further calculations. Then relation (5.30) becomes espccially simple 

Taking into account cq. (5.23), thc secular equation (3.3) cari now bc rcdiiccd to 

The second order self-cnergy matrix 

describes the virtual transitions between the two types of doorway states. Its explicit form 
depends on the interference regime inside the second group. We further assumc that tlie 
antihcrmitian part dominates in the I-Iamiltonian submatrix (5.25). Thercfore we diagonalize 
first this part by dcmanding the vectors to satisfy the coriditions 

The opposite case with dominating liermitian part can be treated in an analogous manner. 
Going further along the same line as in subsection 4.1, one finds for the eigenvectors 

with the norrnalization condition 

The corrcsponding cigcnvalucs qa arc tlie roots of thc equation 

I3ach of ttic b - 1 cigcrivalucs 4" lies bctwecn two ncighbouring valucs yc. Tlic last tlirce 
cqiiatioris shsuld bc corriparecil with cqs. (11.22) - (4.24). 



Considering the hermitian part of the hamiltonian (5.25) to be a weak perturbation, one 
obtains 

i 
(5.38) 

in first approximation. The corrections are proportional to the ratio A:/AS, of the variantes 
of the unperturbed levels e, and of the collective widths yC. The approximation is justified 
when this ratio is small. 

Under the last condition, one can also neglect the hermitian part of the coupling matrix 
X, eq. (5.26). The only nonzero matrix element in the right lower Corner of the self-energy 
matrix Q reads then 

and the secular equation (5.32) reduces to 

wherc the notation 

has been introduced. Herc we rieglectcd thc matrix elemerits Voi = Ko arid sct Zo = Zl = EO. 
r 3  l h e  corrcsponding corrcctions are again proportional to K' , d2.  'rhe equation (5.40) is 
equivalent to an algebraic equatiori of (X: + 1)th order. It detcrmiries tlic complex energics 
of the k $ 1  doorway rcsonances, 

5.3 The Two-Level Approximation 

Let us temporarily omit also the second term q(E) in eq. (5.41). Then the secular equa- 
tion (5.40) reduces to the Same quadratic one which appears in the single-channel problcm 
investigated in [19]. In this approximation, one is left with two interferirig collectivc levcls 
only. The latter problem can be easily solvcd exactly. (Sce for examplc [32] and [4S] where 
different aspects of the problem are treated. It has much in cornmon with thc physics of thr, 
text-book systems of the neutral kaons [28, 491, the p and w mesons [SO] or the 2+ doublct 
in ' B e  [29, 511.) Using the notation 

one obtains explicitly 

where 

and 



Apart from the angle 0, the interference of the collective states depends on the ratio 

of the strengths of the external and internal interactions. The solution (5.43) is valid when 
0 < 0 < n/4; for n/4 < O < n/2 the imaginary parts of the two roots are to be replaced 
by each other. To be definite, we consider the first possibility below. 

The quantity 1x1 measures the energy distance between the two resonances, 

whereas ( rneasures the difference of their total widths, 

According to (5.3175.44), one further has 

in the same approximation. The latter cxpression sliows that thc closer the rcsonanccs arc: 
to each other the more similar are their dipole strengths. 

The situation is especially simple for thc angle 0 = ~ / 4 .  In tliis case 

In the Iimit X < 2, the two collective levels dw = 0 and dw = 1 are separated by a large 
distance - D2 but have the Same widths. The level dw = 1 carries the whole dipole strength. 
With growing X the levels are getting closer and finally merge when X reaches the value 2. 
Vor X > 2, the dipole strengths as well as the energies of both resonances remairi equal to 
each other while their widths differ more and more with increasing X. 

The transition at the point X = 2 gets smoother for other values of the anglc O but 
still exists as long as O is not too close to 0 or ~ / 2 .  If the internal interaction prevails and 
A « 2, both collective levels have comparable widths, 

while only the second one is displaced by the distance D2 and carries the whole dipole 
strength. According to cqs. (5.9, 5.10), the total width of this level is equal to 

in full agrccmcnt with cq. (3.6). In the opposite case of the dominating external couplirig, 
X 2, the cnerpy displaccment D2 is sharcd by thc two collective resonances, 



(Here we omitted the small corrections to the positions of the resonances). The 
corresponding dipole strengths are, in this case, equal to 

f 0  FZ sin20,  f1 x cos20 . (5.54) 

The nucleon width of the level dw = 0 decreases with growing X. Finally this resonance 
practically disappeares from the decay spectrum in the particle channels. In agreement 
with eq. (5.54) it gets however a nonvanishing radiation width and contributes in the 
photoemission process (see subsection 6.2). 

Let us now consider'the role of the other doorway resonances x so - S(-/), eq- (5.38). 
Substituting the complex energies Eo,l found above into the sum (5.39), one Sees that the 
denominators of the terms of this sum contain, as a rule, one of the large quantities D2 or 
(y). According to eq. (5.28), such terms are of the order of magnitude r2/k or P/X: where 
the parameters 

rnay be expected to be reasonably small. Therefore, these doorway states acquire a rela- 
tively small dipole strength. The iriterference of the first two collcctivc states remains most 
irnportarit and the abovc two-rcsonance approximation givcs a description which is at least 
qualitatively satisfactory. LVhcii, liowcvcr, soriie of the levels & fall 1y cliancc anomolously 
close to one of tlic former two, tliese doorway states take part in tlie intcrfererice and the 
picture becomes rriore corriplicatcd. 

6 Nurnerical Results and Discussion 
To simplify the analytical study, we restricted ourselves in the foregoing sectioris to tlic casc 
of a very strong interaction 7-1(~"~) (5.1) so that the energy range A, of tlie iiriperturbed 
levels e, could be neglected. In such an approximation, tlie Nt, = N - X: - 1 trappcd statcs 
are almost fully decoupled from the continuum. Only the Nd, = k + 1 c o l l ~ c t i s ~  doorway 
states remain relevant in studying the Cross section pattern. In this case, the iriterfcrence 
picture is determined essentially by the ratio X = (7)/D2 of the strengths of external and 
internal interactions and by the angle O bettveen the dipole vector D arid the k-dimensional 
subspace of decay vectors Ac. 

Assuming further that all the vectors Ac are pairwise orthogorinl and have thc samc 
lengths, the matrix 2 of the scalar ~roducts  becomes proportional to uxiity and tlic problern 
is reduced to the case with only ttvo decayirig states which are: mixcd and share the total 
dipole strength. The picture arising from the interfemnce of two resoriaxice states is govcrned 
by the effect of avoided resonance crossing. According to cq. (5.311, the dipolc strcngths 
of the two resonanccs behave very much like thcir positions iri eIicrgy when considercd as 
functions of X. Wl& the surns of tlie two rcsonancc energics arid of thc two strcngths 
rcmain constant, the corrcsponding differcnces dccrease as functioxis of incrcasi~ig X iip to 
certain minimum valucs wliicll depcrid on tlic ariglc O orily. Tlic widths of tlie two states 
iricrease first tvith increasirig X but bifurcate for large X. 

This bchaviour is illustratcd iii Fig.1. Thc angle O is choscri to givc cos2Q N 0.65 arid io 
is set to zero, The c~lcrgics of thc ttvo collectivc rcsonarices (measiircd in iiriits of tfic total 
encrgy displacerrierit D2) and tlieir dipolc strcngths plott,cd in  dcpcndcncr: oti X in 13ig. l(a) 
coincidc perfectiy. Fig. l(b) displays tlie bcliaviaur of t he widths of thc ttvo ri:soiiaac<: sZ at es 
vcrsus thcir cliergics arid/or dipolc strengths wlicri X cliarigcs iii tlic intcrval 0 f 5. 



In the following, we check the relevante of the analytical results obtained by performing 
numerical calculations under less restrictive assumptions. We have chosen N = 10 levels e, 
distributed more or less homogeneously and coupled to k = 3 Open particle decay channels. 
The extension of the parental spectrum of the N discrete levels e, is from -0.2 to 0.2 in 
relative units of the total energy displacement D2. This implies that K Ae/D2 N 0.4. As 
in Fig. 1, we set O x 36.3' but the lengths of the vectors AC differ from one another within 
10%. The angles O„I between the pairs Ac and A"' are confined to 0.17 5 J cos O„I J _< 0.31. 

In Fig.2, the energies and dipole strengths of all 10 resonances are plotted as a function of 
X while the changes of the widths with X are shown in the representation of the I?, versus the 

E, and dipole strengths f", respectively. For small X, there is only one displaccd 
state the dipole strength of which is very close to unity. With X increasing, first Nd, = 4 
doorway states appear three of which are formed according to the three Open decay chanricls 
from the group of N - 1 states lying around E = 0, while the fourth state with large dipolc 
strength lies at the energy EID2 x 1. These four states almost exhaust tlie whole surn of 
widths Tr W and the total dipole strength while the internal as well as cxterrial collectivity 
of the Nt, = G trapped statcs remairi srnall. Fig. 2(b) shows that thc total dipole strength 
is distributed mainly over two states: thc original dipolc state and one out of thc group 
around E = 0. The width 01 the latter state is srnaller than those of tlic othcr threc broad 
states. Finally, it will be trapped at vcry largc X (Fig. 2(c)). Tliis bcliaviour of tlic two 
states is qualitativcly quite sirnilar to that iri thc two-level approxirriatioti (cornparo Fig. 1). 
fIowever, an apprcciablc part of the dipolc strerigth is rrioved to tlie othcr low-lying doorway 
components which will not bc trappcd. 

Thus, the numerical results confirm the interplay of two lcirids of collectivity in the 
nuclear motion. The cohererit internal dipole-dipole residual intcraction togetlier with tlie 
external interaction via k common decay channcls creates a coricentration of tlic dipole 
strength and full escape width Tr W on k + 1 collective doorway states out of the N > k 
resonance states. 

Two very different energy scates are formed due to the internal dipole-dipole intcraction: 
In the limit of Zero coupling to the continuum all levels with the exception of tlic collective 
one are confined to the energy interval A, while the latter is displaced far away by tlie 
distance D2 » A,. With increasirig external interaction, the width collectivization takcs 
place if TrW exceeds tlie interval A,. This happens when X is still srnall. As a result, k $ I 
states get escape widths being comparable to one another while N - k - 1 states become 
trapped. The k + 1 states absorbing the total width TrW are the collective doorway states. 

When TrW approaclies tlie value D2, with further increasing X a secorid stage begins: 
the widths are redistributed orice more and the width of one of tfic doorway states starts 
to decrease and becomes firially trapped in the limit of very large X. Tliis redistribution of 
the widths is accompanied by a rcdisitribution of the dipole strcngth arid an energy shift of 
mainly tcvo doorway states: the state witti large internal collectivity and that which becomes 
trapped finally. 

7 Summary 

Sumrnarizirig, we statc tIie following. On the basis of a phcnornenological schcrtiatic rnodcl 
we have investigated thc ovcrlappirig of the different doorway componcnts of a giant mul- 
tipole rcsonance. 'i'lic internal darnpirig of thc collcctivc rriotiori ciuc ta thc coiiplirig to 
cornplicatcd cor~ipourid statcs lias bccri ornittcd ori this stage. 'rtic rriixirig phascs arc large 



when both the internal and external interaction are of comparable strength. The interplay 
and competition of the two kinds of collective behaviour induced by the internal and external 
coupling, respectively, give rise to nontrivial interferences between the doorway resonances. 

The concept of the partial widths of a giant resonance becomes ambiguous because of 
the interferences: the partial widths determined in terms of the hermitian I<-matrix and of 
the unitary S-matrix must be distinguished. The first ones appear in the integral sum rule 
(2.36) for the decay strengths into specific channels while the second ones are connected mith 
the decay into the individual channels in a quite nontrivial manner (section 2). Therefore, 
the parameters of the I<- rather than S-matrix are generally extracted when the escape 
widths of a GR are measured. 

In a forthcoming paper, we study the influence of the interferences discussed in this paper 
onto tbe Cross section in order to allow an at least qualitative comparison with experimental 
data. 
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Figure Captions 

Fig. 1 
The X-dependence of resonance energies and dipole strengths (a) and the logarith~n of the widths 
versus energies or strengths (b) with X varying from 0 to 5 in the two-level approximatiori. 

Fig.2 
The X-depcndence of resonance energies (a) and dipolc strengths (L>) .  The logarithrn of the widths 
versiis energies (C) and dipole strcngths (d) with X varying fror11 0 to 5 in steps of 0.02. (Inset sf 
(d) shows thc magnificd region of small f S  in the doiible log-scalc). J?or paranieters sce text. 
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