Motivated by the question, which kind of physical interactions and processes
are needed for the production of quantum entanglement, Peres has put forward
the radical idea of delayed-choice entanglement swapping. There, entanglement
can be "produced a posteriori, after the entangled particles have been measured
and may no longer exist". In this work we report the first realization of
Peres' gedanken experiment. Using four photons, we can actively delay the
choice of measurement-implemented via a high-speed tunable bipartite state
analyzer and a quantum random number generator-on two of the photons into the
time-like future of the registration of the other two photons. This effectively
projects the two already registered photons onto one definite of two mutually
exclusive quantum states in which either the photons are entangled (quantum
correlations) or separable (classical correlations). This can also be viewed as
"quantum steering into the past"