116 research outputs found

    The erythropoietin receptor expressed in skeletal muscle is essential for mitochondrial biogenesis and physiological exercise

    Get PDF
    Erythropoietin (EPO) is a haematopoietic hormone that regulates erythropoiesis, but the EPO-receptor (EpoR) is also expressed in non-haematopoietic tissues. Stimulation of the EpoR in cardiac and skeletal muscle provides protection from various forms of pathological stress, but its relevance for normal muscle physiology remains unclear. We aimed to determine the contribution of the tissue-specific EpoR to exercise-induced remodelling of cardiac and skeletal muscle. Baseline phenotyping was performed on left ventricle and m. gastrocnemius of mice that only express the EpoR in haematopoietic tissues (EpoR-tKO). Subsequently, mice were caged in the presence or absence of a running wheel for 4 weeks and exercise performance, cardiac function and histological and molecular markers for physiological adaptation were assessed. While gross morphology of both muscles was normal in EpoR-tKO mice, mitochondrial content in skeletal muscle was decreased by 50%, associated with similar reductions in mitochondrial biogenesis, while mitophagy was unaltered. When subjected to exercise, EpoR-tKO mice ran slower and covered less distance than wild-type (WT) mice (5.5 ± 0.6 vs. 8.0 ± 0.4 km/day, p < 0.01). The impaired exercise performance was paralleled by reductions in myocyte growth and angiogenesis in both muscle types. Our findings indicate that the endogenous EPO-EpoR system controls mitochondrial biogenesis in skeletal muscle. The reductions in mitochondrial content were associated with reduced exercise capacity in response to voluntary exercise, supporting a critical role for the extra-haematopoietic EpoR in exercise performance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00424-021-02577-4

    Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction

    Get PDF
    AIMS: Sodium-glucose co-transporter 2 (SGLT2) inhibition reduces heart failure hospitalizations in patients with diabetes, irrespective of glycaemic control. We examined the effect of SGLT2 inhibition with empagliflozin (EMPA) on cardiac function in non-diabetic rats with left ventricular (LV) dysfunction after myocardial infarction (MI). METHODS AND RESULTS: Non-diabetic male Sprague-Dawley rats underwent permanent coronary artery ligation to induce MI, or sham surgery. Rats received chow containing EMPA that resulted in an average daily intake of 30 mg/kg/day or control chow, starting before surgery (EMPA-early) or 2 weeks after surgery (EMPA-late). Cardiac function was assessed using echocardiography and histological and molecular markers of cardiac remodelling and metabolism were assessed in the left ventricle. Renal function was assessed in metabolic cages. EMPA increased urine production by two-fold without affecting creatinine clearance and serum electrolytes. EMPA did not influence MI size, but LV ejection fraction (LVEF) was significantly higher in the EMPA-early and EMPA-late treated MI groups compared to the MI group treated with vehicle (LVEF 54%, 52% and 43%, respectively, all P < 0.05). EMPA also attenuated cardiomyocyte hypertrophy, diminished interstitial fibrosis and reduced myocardial oxidative stress. EMPA treatment reduced mitochondrial DNA damage and stimulated mitochondrial biogenesis, which was associated with the normalization of myocardial uptake and oxidation of glucose and fatty acids. EMPA increased circulating ketone levels as well as myocardial expression of the ketone body transporter and two critical ketogenic enzymes, indicating that myocardial utilization of ketone bodies was increased. Together these metabolic changes were associated with an increase in cardiac ATP production. CONCLUSION: Empagliflozin favourably affects cardiac function and remodelling in non-diabetic rats with LV dysfunction after MI, associated with substantial improvements in cardiac metabolism and cardiac ATP production. Importantly, it did so without renal adverse effects. Our data suggest that EMPA might be of benefit in heart failure patients without diabetes

    Gain-of-function mutation in ubiquitin ligase KLHL24 causes desmin degradation and dilatation in hiPSC-derived engineered heart tissues

    Get PDF
    The start codon c.1A>G mutation in KLHL24, encoding ubiquitin ligase KLHL24, results in the loss of 28 N-terminal amino acids (KLHL24-ΔN28) by skipping the initial start codon. In skin, KLHL24-ΔN28 leads to gain of function, excessively targeting intermediate filament keratin-14 for proteasomal degradation and ultimately causing epidermolysis bullosa simplex (EBS). The majority of patients with EBS are also diagnosed with dilated cardiomyopathy (DCM), but the pathological mechanism in the heart is unknown. As desmin is the cardiac homolog of keratin-14, we hypothesized that KLHL24-ΔN28 leads to excessive degradation of desmin, resulting in DCM. Dynamically loaded engineered heart tissues (dyn-EHTs) were generated from human-induced pluripotent stem cell–derived (hiPSC-derived) cardiomyocytes from 2 patients and 3 nonfamilial controls. Ten-fold lower desmin protein levels were observed in patient-derived dyn-EHTs, in line with diminished desmin levels detected in patients’ explanted heart. This was accompanied by tissue dilatation, impaired mitochondrial function, decreased force values, and increased cardiomyocyte stress. HEK293 transfection studies confirmed KLHL24-mediated desmin degradation. KLHL24 RNA interference or direct desmin overexpression recovered desmin protein levels, restoring morphology and function in patient-derived dyn-EHTs. To conclude, presence of KLHL24-ΔN28 in cardiomyocytes leads to excessive degradation of desmin, affecting tissue morphology and function, which can be prevented by restoring desmin protein levels

    Cloning and Functional Studies of a Splice Variant of CYP26B1 Expressed in Vascular Cells

    Get PDF
    Background: All-trans retinoic acid (atRA) plays an essential role in the regulation of gene expression, cell growth and differentiation and is also important for normal cardiovascular development but may in turn be involved in cardiovascular diseases, i.e. atherosclerosis and restenosis. The cellular atRA levels are under strict control involving several cytochromes P450 isoforms (CYPs). CYP26 may be the most important regulator of atRA catabolism in vascular cells. The present study describes the molecular cloning, characterization and function of atRA-induced expression of a spliced variant of the CYP26B1 gene. Methodology/Principal Findings: The coding region of the spliced CYP26B1 lacking exon 2 was amplified from cDNA synthesized from atRA-treated human aortic smooth muscle cells and sequenced. Both the spliced variant and full length CYP26B1 was found to be expressed in cultured human endothelial and smooth muscle cells, and in normal and atherosclerotic vessel. atRA induced both variants of CYP26B1 in cultured vascular cells. Furthermore, the levels of spliced mRNA transcript were 4.5 times higher in the atherosclerotic lesion compared to normal arteries and the expression in the lesions was increased 20-fold upon atRA treatment. The spliced CYP26B1 still has the capability to degrade atRA, but at an initial rate one-third that of the corresponding full length enzyme. Transfection of COS-1 and THP-1 cells with the CYP26B1 spliced variant indicated either an increase or a decrease in the catabolism of atRA, probably depending on the expression of other atRA catabolizing enzymes in the cells. Conclusions/Significance: Vascular cells express the spliced variant of CYP26B1 lacking exon 2 and it is also increased in atherosclerotic lesions. The spliced variant displays a slower and reduced degradation of atRA as compared to the full-length enzyme. Further studies are needed, however, to clarify the substrate specificity and role of the CYP26B1 splice variant in health and disease

    ATPase Inhibitory Factor-1 Disrupts Mitochondrial Ca2+ Handling and Promotes Pathological Cardiac Hypertrophy through CaMKIIδ

    Get PDF
    ATPase inhibitory factor-1 (IF1) preserves cellular ATP under conditions of respiratory collapse, yet the function of IF1 under normal respiring conditions is unresolved. We tested the hypothesis that IF1 promotes mitochondrial dysfunction and pathological cardiomyocyte hypertrophy in the context of heart failure (HF). Methods and results: Cardiac expression of IF1 was increased in mice and in humans with HF, downstream of neurohumoral signaling pathways and in patterns that resembled the fetal-like gene program. Adenoviral expression of wild-type IF1 in primary cardiomyocytes resulted in pathological hypertrophy and metabolic remodeling as evidenced by enhanced mitochondrial oxidative stress, reduced mitochondrial respiratory capacity, and the augmentation of extramitochondrial glycolysis. Similar perturbations were observed with an IF1 mutant incapable of binding to ATP synthase (E55A mutation), an indication that these effects occurred independent of binding to ATP synthase. Instead, IF1 promoted mitochondrial fragmentation and compromised mitochondrial Ca2+ handling, which resulted in sarcoplasmic reticulum Ca2+ overloading. The effects of IF1 on Ca2+ handling were associated with the cytosolic activation of calcium-calmodulin kinase II (CaMKII) and inhibition of CaMKII or co-expression of catalytically dead CaMKIIδC was sufficient to prevent IF1 induced pathological hypertrophy. Conclusions: IF1 represents a novel member of the fetal-like gene program that contributes to mitochondrial dysfunction and pathological cardiac remodeling in HF. Furthermore, we present evidence for a novel, ATP-synthase-independent, role for IF1 in mitochondrial Ca2+ handling and mitochondrial-to-nuclear crosstalk involving CaMKII

    Optimizing the electrocatalytic activity of surface confined Co macrocyclics for the electrooxidation of thiocyanate at pH 4

    Get PDF
    We have studied the trends in catalytic activity of several Co macrocyclics confined on the surface graphite electrodes for the oxidation of thiocyanate. A plot of log i (at constant E) versus the formal potential of the catalyst gives a volcano correlation, indicating that the Co(II/I) redox potential needs to be tuned, in order to achieve maximum reactivity. Graphite electrodes modified with Co phthalocyanine at pH 4 exhibit linear amperometric response for thiocyanate concentration in the range 10−7 and 10−3 M. Theoretical calculations show that electrocatalytic activity (as log i at constant E) plotted versus the energy of the LUMO of the Co complex also gives a volcano correlation

    Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile

    Get PDF
    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years postemplacement is a process inherent in the settling of pyroclastic material

    Correction: Exome Sequencing in an Admixed Isolated Population IndicatesNFXL1 Variants Confer a Risk for Specific Language Impairment

    Get PDF
    Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10–4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model
    corecore