452 research outputs found

    The Broad-Band Spectrum and Infrared Variability of the Magnetar AXP 1E1048.1-5937

    Full text link
    We present photometry of the Anomalous X-ray pulsar 1E1048.1-5937 in the infrared and optical, taken at Magellan and the VLT. The object is detected in the I, J and Ks bands under excellent conditions. We find that the source has varied greatly in its infrared brightness and present these new magnitudes. No correlation is found between the infrared flux and spin-down rate, but the infrared flux and X-ray flux may be anti-correlated. Assuming nominal reddening values, the resultant spectral energy distribution is found to be inconsistent with the only other AXP SED available (for 4U0142+61). We consider the effect of the uncertainty in the reddening to the source on its SED. We find that although both the X-ray and infrared fluxes have varied greatly for this source, the most recent flux ratio is remarkably consistent with what is is found for other AXPs. Finally, we discuss the implications of our findings in the context of the magnetar model.Comment: 21 pages, 5 eps figures. Submitted to Ap

    A Theoretical Light-Curve Model for the Recurrent Nova V394 Coronae Austrinae

    Get PDF
    A theoretical light curve for the 1987 outburst of V394 Coronae Austrinae (V394 CrA) is modeled to obtain various physical parameters of this recurrent nova. We then apply the same set of parametersto a quiescent phase and confirm that these parameters give a unified picture of the binary. The early visual light curve (1-10 days after the optical maximum) is well reproduced by a thermonuclear runaway model on a very massive WD close to the Chandrasekhar limit (1.37 +- 0.01 M_sun). The ensuing plateau phase (10-30 days) is also reproduced by the combination of a slightly irradiated MS and a fully irradiated flaring-up disk with a radius ~1.4 times the Roche lobe size. The best fit parameters are the WD mass 1.37 M_sun, the companion mass 1.5 M_sun (0.8-2.0 M_sun is acceptable), the inclination angle of the orbit i~65-68 degree, and the flaring-up rim ~0.30 times the disk radius. The envelope mass at the optical peak is estimated to be ~6 x 10^{-6} M_sun, which indicates an average mass accretion rate of 1.5 x 10^{-7} M_sun yr^{-1} during the quiescent phase between the 1949 and 1987 outbursts. In the quiescent phase, the observed light curve can be reproduced with a disk size of 0.7 times the Roche lobe size and a rather slim thickness of 0.05 times the accretion disk size at the rim. About 0.5 mag sinusoidal variation of the light curve requires the mass accretion rate higher than ~1.0 x 10^{-7} M_sun yr^{-1}, which is consistent with the above estimation from the 1987 outburst. These newly obtained quantities are exactly the same as those predicted in a new progenitor model of Type Ia supernovae.Comment: 9 pages including 4 figures, to appear in the Astrophysical Journal, Part

    Detection of Gravitational Redshift on the Solar Disk by Using Iodine-Cell Technique

    Full text link
    With an aim to examine whether the predicted solar gravitational redshift can be observationally confirmed under the influence of the convective Doppler shift due to granular motions, we attempted measuring the absolute spectral line-shifts on a large number of points over the solar disk based on an extensive set of 5188-5212A region spectra taken through an iodine-cell with the Solar Domeless Telescope at Hida Observatory. The resulting heliocentric line shifts at the meridian line (where no rotational shift exists), which were derived by finding the best-fit parameterized model spectrum with the observed spectrum and corrected for the earth's motion, turned out to be weakly position-dependent as ~ +400 m/s near the disk center and increasing toward the limb up to ~ +600 m/s (both with a standard deviation of sigma ~ 100 m/s). Interestingly, this trend tends to disappear when the convectiveshift due to granular motions (~-300 m/s at the disk center and increasing toward the limb; simulated based on the two-component model along with the empirical center-to-limb variation) is subtracted, finally resulting in the averaged shift of 698 m/s (sigma = 113 m/s). Considering the ambiguities involved in the absolute wavelength calibration or in the correction due to convective Doppler shifts (at least several tens m/s, or more likely up to <~100 m/s), we may regard that this value is well consistent with the expected gravitational redshift of 633 m/s.Comment: 28 pages, 12 figures, electronic materials as ancillary data (table3, table 4, ReadMe); accepted for publication in Solar Physic

    An empirical temperature calibration for the Delta a photometric system. II. The A-type and mid F-type star

    Full text link
    With the Delta a photometric system, it is possible to study very distant galactic and even extragalactic clusters with a high level of accuracy. This can be done with a classical color-magnitude diagram and appropriate isochrones. The new calibration presented in this paper is a powerful extension. For open clusters, the reddening is straightforward for an estimation via Isochrone fitting and is needed in order to calculate the reddening-free, temperature sensitive, index (g1-y)0. As a last step, the calibration can be applied to individual stars. Because no a-priori reddening-free photometric parameters are available for the investigated spectral range, we have applied the dereddening calibrations of the Stromgren uvbybeta system and compared them with extinction models for the Milky Way. As expected from the sample of bright stars, the extinction is negligible for almost all objects. As a next step, already established calibrations within the Stromgren uvbybeta, Geneva 7-color, and Johnson UBV systems were applied to a sample of 282 normal stars to derive a polynomial fit of the third degree for the averaged effective temperatures to the individual (g1-y)0 values with a mean of the error for the whole sample of Delta T(eff) is 134K, which is lower than the value in Paper I for hotter stars. No statistically significant effect of the rotational velocity on the precision of the calibration was found.Comment: 5 pages, 2 figures, accepted by A&

    Optical Detection of Two Intermediate Mass Binary Pulsar Companions

    Full text link
    We report the detection of probable optical counterparts for two Intermediate Mass Binary Pulsar (IMBP) systems, PSR J1528-3146 and PSR J1757-5322. Recent radio pulsar surveys have uncovered a handful of these systems with putative massive white dwarf companions, thought to have an evolutionary history different from that of the more numerous class of Low Mass Binary Pulsars (LMBPs) with He white dwarf companions. The study of IMBP companions via optical observations offers us several new diagnostics: the evolution of main sequence stars near the white-dwarf-neutron star boundary, the physics of white dwarfs close to the Chandrasekhar limit, and insights into the recycling process by which old pulsars are spun up to high rotation frequencies. We were unsuccessful in our attempt to detect optical counterparts of PSR J1141-6545, PSR J1157-5112, PSR J1435-6100, and PSR J1454-5846.Comment: 9 pages, 2 figures, accepted for publication in ApJ

    Discovery of an optical bow-shock around pulsar B0740-28

    Get PDF
    We report the discovery of a faint H-alpha pulsar wind nebula (PWN) powered by the radio pulsar B0740-28. The characteristic bow-shock morphology of the PWN implies a direction of motion consistent with the previously measured velocity vector for the pulsar. The PWN has a flux density more than an order of magnitude lower than for the PWNe seen around other pulsars, but, for a distance 2 kpc, it is consistent with propagation through a medium of atomic density n_H ~ 0.25 cm^{-3}, and neutral fraction of 1%. The morphology of the PWN in the area close to the pulsar is distinct from that in downstream regions, as is also seen for the PWN powered by PSR B2224+65. In particular, the PWN associated with PSR B0740-28 appears to close at its rear, suggesting that the pulsar has recently passed through a transition from low density to high density ambient gas. The faintness of this source underscores that deep searches are needed to find further examples of optical pulsar nebulae.Comment: 5 pages, 1 figure, to appear in Astronomy & Astrophysics Letter

    Can Life develop in the expanded habitable zones around Red Giant Stars?

    Full text link
    We present some new ideas about the possibility of life developing around sub-giant and red giant stars. Our study concerns the temporal evolution of the habitable zone. The distance between the star and the habitable zone, as well as its width, increases with time as a consequence of stellar evolution. The habitable zone moves outward after the star leaves the main sequence, sweeping a wider range of distances from the star until the star reaches the tip of the asymptotic giant branch. If life could form and evolve over time intervals from 5×1085 \times 10^8 to 10910^9 years, then there could be habitable planets with life around red giant stars. For a 1 M_{\odot} star at the first stages of its post main-sequence evolution, the temporal transit of the habitable zone is estimated to be of several 109^9 years at 2 AU and around 108^8 years at 9 AU. Under these circumstances life could develop at distances in the range 2-9 AU in the environment of sub-giant or giant stars and in the far distant future in the environment of our own Solar System. After a star completes its first ascent along the Red Giant Branch and the He flash takes place, there is an additional stable period of quiescent He core burning during which there is another opportunity for life to develop. For a 1 M_{\odot} star there is an additional 10910^9 years with a stable habitable zone in the region from 7 to 22 AU. Space astronomy missions, such as proposed for the Terrestrial Planet Finder (TPF) and Darwin should also consider the environments of sub-giants and red giant stars as potentially interesting sites for understanding the development of life

    Atmospheric nanocompounds on lanzarote island: vehicular exhaust and igneous geologic formation interactions

    Get PDF
    Atmosphere contamination management is one of the most important features in pollution risk management. The worldwide rise in tourism increases apprehension about its probable destructive conservation influence on various aspects of global conservation. One of the principal dangers increased by tourism-based modes of travel are nanoparticles (NPs) containing potentially hazardous elements (PHEs) contamination. One example of this is island destination of Lanzarote, in Spain's Canary Islands in which we examined contamination of the local atmosphere, water and soil. Important NPs containing PHEs, (e.g. arsenic, chromium, lead, and mercury), were found in this locale. It is reasonable to assume that this pollution poses an increased environmental danger to the local biome(s). Modes of transport (i.e. by car, airplane, bus) were shown to be an important contributor to this localized contamination as demonstrated by particulate matter (PM) readings collected near the island's airport. If no measures are taken to reduce vehicle and aircraft traffic, the tendency is to increase environmental degradation will continue unabated. As this particular area of Lanzarote is also one of wine production, increased pollution has the potential for negative impacts on the region's economy

    The solar photospheric abundance of carbon.Analysis of atomic carbon lines with the CO5BOLD solar model

    Get PDF
    The use of hydrodynamical simulations, the selection of atomic data, and the computation of deviations from local thermodynamical equilibrium for the analysis of the solar spectra have implied a downward revision of the solar metallicity. We are in the process of using the latest simulations computed with the CO5BOLD code to reassess the solar chemical composition. We determine the solar photospheric carbon abundance by using a radiation-hydrodynamical CO5BOLD model, and compute the departures from local thermodynamical equilibrium by using the Kiel code. We measure equivalent widths of atomic CI lines on high resolution, high signal-to-noise ratio solar atlases. Deviations from local thermodynamic equilibrium are computed in 1D with the Kiel code. Our recommended value for the solar carbon abundance, relies on 98 independent measurements of observed lines and is A(C)=8.50+-0.06, the quoted error is the sum of statistical and systematic error. Combined with our recent results for the solar oxygen and nitrogen abundances this implies a solar metallicity of Z=0.0154 and Z/X=0.0211. Our analysis implies a solar carbon abundance which is about 0.1 dex higher than what was found in previous analysis based on different 3D hydrodynamical computations. The difference is partly driven by our equivalent width measurements (we measure, on average, larger equivalent widths with respect to the other work based on a 3D model), in part it is likely due to the different properties of the hydrodynamical simulations and the spectrum synthesis code. The solar metallicity we obtain from the CO5BOLD analyses is in slightly better agreement with the constraints of helioseismology than the previous 3D abundance results. (Abridged)Comment: Astronomy and Astrophysics, accepte

    The highly polarized open cluster Trumpler 27

    Get PDF
    We have carried out multicolor linear polarimetry (UBVRI) of the brightest stars in the area of the open cluster Trumpler 27. Our data show a high level of polarization in the stellar light with a considerable dispersion, from P=4P = 4% to P=9.5P = 9.5%. The polarization vectors of the cluster members appear to be aligned. Foreground polarization was estimated from the data of some non-member objects, for which two different components were resolved: the first one associated with a dust cloud close to the Sun producing Pλmax=1.3P_{\lambda max}=1.3% and θ=146\theta=146 degrees, and a second component, the main source of polarization for the cluster members, originated in another dust cloud, which polarizes the light in the direction of θ=29.5\theta= 29.5 degrees. From a detailed analysis, we found that the two components have associated values EBV<0.45E_{B-V} < 0.45 for the first one, and EBV>0.75E_{B-V} > 0.75 for the other. Due the difference in the orientation of both polarization vectors, almost 90 degrees (180 degrees at the Stokes representation), the first cloud (θ146\theta \sim 146 degrees) depolarize the light strongly polarized by the second one (θ29.5\theta \sim 29.5 degrees).Comment: 12 Pages, 6 Figures, 2 tables (9 Pages), accepted for publication in A
    corecore