129 research outputs found

    CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOS Survey Field

    Get PDF
    We present a multi-wavelength photometric catalog in the COSMOS field as part of the observations by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The catalog is based on Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) and Advanced Camera for Surveys observations of the COSMOS field (centered at R.A.: 10^h00^m28^s, Decl.:+02^º12^'21^"). The final catalog has 38671 sources with photometric data in 42 bands from UV to the infrared (~ 0.3-8 µm). This includes broadband photometry from HST, CFHT, Subaru, the Visible and Infrared Survey Telescope for Astronomy, and Spitzer Space Telescope in the visible, near-infrared, and infrared bands along with intermediate- and narrowband photometry from Subaru and medium-band data from Mayall NEWFIRM. Source detection was conducted in the WFC3 F160W band (at 1.6 μm) and photometry is generated using the Template FITting algorithm. We further present a catalog of the physical properties of sources as identified in the HST F160W band and measured from the multi-band photometry by fitting the observed spectral energy distributions of sources against templates

    Kpc-scale Properties of Emission-line Galaxies

    Get PDF
    We perform a detailed study of the resolved properties of emission-line galaxies at kpc-scale to investigate how small-scale and global properties of galaxies are related. 119 galaxies with high-resolution Keck/DEIMOS spectra are selected to cover a wide range in morphologies over the redshift range 0.2<z<1.3. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy we perform SED fitting per resolution element, producing resolved rest-frame U-V color, stellar mass, star formation rate, age and extinction maps. We develop a technique to identify blue and red "regions" within individual galaxies, using their rest-frame color maps. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the "main sequence" of star forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1+/-0.1 and a scatter of ~0.2 dex compared to red regions with a slope of 1.3+/-0.1 and a scatter of ~0.6 dex. The blue regions show higher specific Star Formation Rates (sSFR) than their red counterparts with the sSFR decreasing since z~1, driver primarily by the stellar mass surface densities rather than the SFRs at a giver resolution element.Comment: 17 pages, 17 figures, Submitted to the Ap

    The DEIMOS 10k spectroscopic survey catalog of the COSMOS field

    Get PDF
    We present a catalog of 10718 objects in the COSMOS field observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ~5500-9800A. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I_AB~23 and K_AB~21, with a secondary peak at K_AB~24. We sample a broad redshift distribution in the range 0<z<6, with one peak at z~1, and another one around z~4. We have identified 13 redshift spikes at z>0.65 with chance probabilities <4xE-4$, some of which are clearly related to protocluster structures of sizes >10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Ly-alpha background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4.Comment: 28 pages, 11 figures and 5 tables. The full catalogue table is available on http://cosmos.astro.caltech.edu. Accepted for publication in the Astrophysical Journa

    Spitzer Observations of the North Ecliptic Pole

    Get PDF
    We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at R.A.=18h00m00s\rm R.A.=18^h00^m00^s, Decl.=66d33m38s.552\rm Decl.=66^d33^m38^s.552). The observations are conducted with IRAC in 3.6 μ\mum and 4.5 μ\mum bands over an area of 7.04 deg2^2 reaching 1σ\sigma depths of 1.29 μ\muJy and 0.79 μ\muJy in the 3.6 μ\mum and 4.5 μ\mum bands respectively. The photometric catalog contains 380,858 sources with 3.6 μ\mum and 4.5 μ\mum band photometry over the full-depth NEP mosaic. Point source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be utilized in constraining the physical properties of extra-galactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extra-galactic infrared background light.Comment: 10 pages, 11 figures and 3 tables. Accepted to the ApJ

    Modelling high resolution ALMA observations of strongly lensed highly star forming galaxies detected by <i>Herschel</i>

    Get PDF
    We have modelled ∼ 0.1 arcsec resolution ALMA imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsic properties of the lensed sub-millimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high redshift sub-millimetre galaxies and low redshift ultra-luminous infra-red galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences

    The clustering of H β\beta + [O III] and [O II] emitters since z \tilde 5: dependencies with line luminosity and stellar mass

    Get PDF
    We investigate the clustering properties of ∼7000 H β + [O III] and [O II] narrowband-selected emitters at z ∼ 0.8–4.7 from the High-z Emission Line Survey. We find clustering lengths, r0, of 1.5–4.0 h−1 Mpc and minimum dark matter halo masses of 1010.7–12.1 M⊙ for our z = 0.8–3.2 H β + [O III] emitters and r0 ∼ 2.0–8.3 h−1 Mpc and halo masses of 1011.5–12.6 M⊙ for our z = 1.5–4.7 [O II] emitters. We find r0 to strongly increase both with increasing line luminosity and redshift. By taking into account the evolution of the characteristic line luminosity, L⋆(z), and using our model predictions of halo mass given r0, we find a strong, redshift-independent increasing trend between L/L⋆(z) and minimum halo mass. The faintest H β + [O III] emitters are found to reside in 109.5 M⊙ haloes and the brightest emitters in 1013.0 M⊙ haloes. For [O II] emitters, the faintest emitters are found in 1010.5 M⊙ haloes and the brightest emitters in 1012.6 M⊙ haloes. A redshift-independent stellar mass dependency is also observed where the halo mass increases from 1011 to 1012.5 M⊙ for stellar masses of 108.5 to 1011.5 M⊙, respectively. We investigate the interdependencies of these trends by repeating our analysis in a Lline−Mstar grid space for our most populated samples (H β + [O III] z = 0.84 and [O II] z = 1.47) and find that the line luminosity dependency is stronger than the stellar mass dependency on halo mass. For L > L⋆ emitters at all epochs, we find a relatively flat trend with halo masses of 1012.5–13 M⊙, which may be due to quenching mechanisms in massive haloes that is consistent with a transitional halo mass predicted by models

    Beyond Spheroids and Discs: Classifications of CANDELS Galaxy Structure at 1.4 < z < 2 via Principal Component Analysis

    Get PDF
    Important but rare and subtle processes driving galaxy morphology and star-formation may be missed by traditional spiral, elliptical, irregular or S\'ersic bulge/disk classifications. To overcome this limitation, we use a principal component analysis of non-parametric morphological indicators (concentration, asymmetry, Gini coefficient, M20M_{20}, multi-mode, intensity and deviation) measured at rest-frame BB-band (corresponding to HST/WFC3 F125W at 1.4 1010M10^{10} M_{\odot}) galaxy morphologies. Principal component analysis (PCA) quantifies the correlations between these morphological indicators and determines the relative importance of each. The first three principal components (PCs) capture \sim75 per cent of the variance inherent to our sample. We interpret the first principal component (PC) as bulge strength, the second PC as dominated by concentration and the third PC as dominated by asymmetry. Both PC1 and PC2 correlate with the visual appearance of a central bulge and predict galaxy quiescence. PC1 is a better predictor of quenching than stellar mass, as as good as other structural indicators (S\'ersic-n or compactness). We divide the PCA results into groups using an agglomerative hierarchical clustering method. Unlike S\'ersic, this classification scheme separates compact galaxies from larger, smooth proto-elliptical systems, and star-forming disk-dominated clumpy galaxies from star-forming bulge-dominated asymmetric galaxies. Distinguishing between these galaxy structural types in a quantitative manner is an important step towards understanding the connections between morphology, galaxy assembly and star-formation.Comment: 31 pages, 24 figures, accepted for publication in MNRA
    corecore