184 research outputs found

    RPANDA: an R package for macroevolutionary analyses on phylogenetic trees

    Get PDF
    A number of approaches for studying macroevolution using phylogenetic trees have been developed in the last few years. Here, we present RPANDA, an R package that implements model‐free and model‐based phylogenetic comparative methods for macroevolutionary analyses. The model‐free approaches implemented in RPANDA are recently developed approaches stemming from graph theory that allow summarizing the information contained in phylogenetic trees, computing distances between trees, and clustering them accordingly. They also allow identifying distinct branching patterns within single trees. RPANDA also implements likelihood‐based models for fitting various diversification models to phylogenetic trees. It includes birth–death models with i) constant, ii) time‐dependent and iii) environmental‐dependent speciation and extinction rates. It also includes models with equilibrium diversity derived from the coalescent process, as well as a likelihood‐based inference framework to fit the individual‐based model of Speciation by Genetic Differentiation, which is an extension of Hubbell's neutral theory of biodiversity. RPANDA can be used to (i) characterize trees by plotting their spectral density profiles (ii) compare trees and cluster them according to their similarities, (iii) identify and plot distinct branching patterns within trees, (iv) compare the fit of alternative diversification models to phylogenetic trees, (v) estimate rates of speciation and extinction, (vi) estimate and plot how these rates have varied with time and environmental variables and (vii) deduce and plot estimates of species richness through geological time. RPANDA provides investigators with a set of tools for exploring patterns in phylogenetic trees and fitting various models to these trees, thereby contributing to the ongoing development of phylogenetics in the life sciences

    Integrating ecology into macroevolutionary research

    Get PDF
    On 9 March, over 150 biologists gathered in London for the Centre for Ecology and Evolution spring symposium, ‘Integrating Ecology into Macroevolutionary Research’. The event brought together researchers from London-based institutions alongside others from across the UK, Europe and North America for a day of talks. The meeting highlighted methodological advances and recent analyses of exemplar datasets focusing on the exploration of the role of ecological processes in shaping macroevolutionary patterns

    NF-kappaB Mediated Transcriptional Repression of Acid Modifying Hormone Gastrin

    Get PDF
    Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFk

    Expression analysis of the TAB2 protein in adult mouse tissues

    Get PDF
    Background: The Interleukin-1 (IL-1) signaling component TAK1 binding protein 2 (TAB2) plays a role in activating the NFκB and JNK signaling pathways. Additionally, TAB2 functions in the nucleus as a repressor of NFκB-mediated gene regulation. Objective: To obtain insight into the function of TAB2 in the adult mouse, we analyzed the in vivo TAB2 expression pattern. Materials and methods: Cell lines and adult mouse tissues were analyzed for TAB2 protein expression and localization. Results: Immunohistochemical staining for TAB2 protein revealed expression in the vascular endothelium of most tissues, hematopoietic cells and brain cells. While TAB2 is localized in both the nucleus and the cytoplasm in cell lines, cytoplasmic localization predominates in hematopoietic tissues in vivo. Conclusions: The TAB2 expression pattern shows striking similarities with previously reported IL-1 receptor expression and NFκB activation patterns, suggesting that TAB2 in vivo is playing a role in these signaling pathways

    The Molecular Phylogenetic Signature of Clades in Decline

    Get PDF
    Molecular phylogenies have been used to study the diversification of many clades. However, current methods for inferring diversification dynamics from molecular phylogenies ignore the possibility that clades may be decreasing in diversity, despite the fact that the fossil record shows this to be the case for many groups. Here we investigate the molecular phylogenetic signature of decreasing diversity using the most widely used statistic for inferring diversity dynamics from molecular phylogenies, the γ statistic. We show that if a clade is in decline its molecular phylogeny may show evidence of the decrease in the diversification rate that occurred between its diversification and decline phases. The ability to detect the change in diversification rate depends largely on the ratio of the speciation rates of the diversification and decline phases, the higher the ratio the stronger the signal of the change in diversification rate. Consequently, molecular phylogenies of clades in relative rapid decline do not carry a signature of their decreasing diversification. Further, the signal of the change in diversification rate, if present, declines as the diversity drop. Unfortunately, the molecular signature of clades in decline is the same as the signature produced by diversity dependent diversification. Given this similarity, and the inability of current methods to detect declining diversity, it is likely that some of the extant clades that show a decrease in diversification rate, currently interpreted as evidence for diversity dependent diversification, are in fact in decline. Unless methods can be developed that can discriminate between the different modes of diversification, specifically diversity dependent diversification and declining diversity, we will need the fossil record, or data from some other source, to distinguish between these very different diversity trajectories

    Molecular phylogenetics and temporal diversification in the genus Aeromonas based on the sequences of five housekeeping genes

    Get PDF
    Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process

    Unexpectedly rapid evolution of mandibular shape in hominins

    Get PDF
    Members of the hominins – namely the so-called ‘australopiths’ and the species of the genus Homo – are known to possess short and deep mandibles and relatively small incisors and canines. It is commonly assumed that this suite of traits evolved in early members of the clade in response to changing environmental conditions and increased consumption of though food items. With the emergence of Homo, the functional meaning of mandible shape variation is thought to have been weakened by technological advancements and (later) by the control over fire. In contrast to this expectation, we found that mandible shape evolution in hominins is exceptionally rapid as compared to any other primate clade, and that the direction and rate of shape change (from the ape ancestor) are no different between the australopiths and Homo. We deem several factors including the loss of honing complex, canine reduction, and the acquisition of different diets may have concurred in producing such surprisingly high evolutionary rates. This study reveals the evolution of mandibular shape in hominins has strong morpho-functional and ecological significance attached

    Universal Ecological Patterns in College Basketball Communities

    Get PDF
    The rank abundance of common and rare species within ecological communities is remarkably consistent from the tropics to the tundra. This invariant patterning provides one of ecology's most enduring and unified tenets: most species rare and a few very common. Increasingly, attention is focused upon elucidating biological mechanisms that explain these species abundance distributions (SADs), but these evaluations remain controversial. We show that college basketball wins generate SADs just like those observed in ecological communities. Whereas college basketball wins are structured by competitive interactions, the result produces a SAD pattern indistinguishable from random wins. We also show that species abundance data for tropical trees exhibits a significant-digit pattern consistent with data derived from complex structuring forces. These results cast doubt upon the ability of SAD analysis to resolve ecological mechanism, and their patterning may reflect statistical artifact as much as biological processes

    Strong Neutral Spatial Effects Shape Tree Species Distributions across Life Stages at Multiple Scales

    Get PDF
    Traditionally, ecologists use lattice (regional summary) count data to simulate tree species distributions to explore species coexistence. However, no previous study has explicitly compared the difference between using lattice count and basal area data and analyzed species distributions at both individual species and community levels while simultaneously considering the combined scenarios of life stage and scale. In this study, we hypothesized that basal area data are more closely related to environmental variables than are count data because of strong environmental filtering effects. We also address the contribution of niche and the neutral (i.e., solely dependent on distance) factors to species distributions. Specifically, we separately modeled count data and basal area data while considering life stage and scale effects at the two levels with simultaneous autoregressive models and variation partitioning. A principal coordinates of neighbor matrix (PCNM) was used to model neutral spatial effects at the community level. The explained variations of species distribution data did not differ significantly between the two types of data at either the individual species level or the community level, indicating that the two types of data can be used nearly identically to model species distributions. Neutral spatial effects represented by spatial autoregressive parameters and the PCNM eigenfunctions drove species distributions on multiple scales, different life stages and individual species and community levels in this plot. We concluded that strong neutral spatial effects are the principal mechanisms underlying the species distributions and thus shape biodiversity spatial patterns

    Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts

    Get PDF
    Unraveling the macroevolutionary history of bryophytes, which arose soon after the origin of land plants but exhibit substantially lower species richness than the more recently derived angiosperms, has been challenged by the scarce fossil record. Here we demonstrate that overall estimates of net species diversification are approximately half those reported in ferns and similar to 30% those described for angiosperms. Nevertheless, statistical rate analyses on time-calibrated large-scale phylogenies reveal that mosses and liverworts underwent bursts of diversification since the mid-Mesozoic. The diversification rates further increase in specific lineages towards the Cenozoic to reach, in the most recently derived lineages, values that are comparable to those reported in angiosperms. This suggests that low diversification rates do not fully account for current patterns of bryophyte species richness, and we hypothesize that, as in gymnosperms, the low extant bryophyte species richness also results from massive extinctions.Assembling the Tree of Life programme at NSF; NSF [EF-0531730-002, EF-0531680, EF-0531750]; Scottish Government's Rural and Environment Science and Analytical Services Division; BeiPD-cofund Marie Curie fellowshipinfo:eu-repo/semantics/publishedVersio
    corecore