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Summary	16	

	17	

1. A	number	of	approaches	for	studying	macroevolution	using	phylogenetic	trees	18	

have	been	developed	in	the	last	few	years.	Here,	we	present	RPANDA,	an	R	19	

package	that	implements	model-free	and	model-based	phylogenetic	comparative	20	

methods	for	macroevolutionary	analyses.	21	

2. The	model-free	approaches	implemented	in	RPANDA	are	recently	developed	22	

approaches	stemming	from	graph	theory	that	allow	summarizing	the	information	23	

contained	in	phylogenetic	trees,	computing	distances	between	trees,	and	24	

clustering	them	accordingly.	They	also	allow	identifying	distinct	branching	25	

patterns	within	single	trees.		26	

3. RPANDA	also	implements	likelihood-based	models	for	fitting	various	27	

diversification	models	to	phylogenetic	trees.	It	includes	birth-death	models	with	28	

i)	constant,	ii)	time-dependent,	and	iii)	environmental-dependent	speciation	and	29	

extinction	rates.	It	also	includes	models	with	equilibrium	diversity	derived	from	30	

the	coalescent	process,	as	well	as	a	likelihood-based	inference	framework	to	fit	31	

the	individual-based	model	of	Speciation	by	Genetic	Differentiation,	which	is	an	32	

extension	of	Hubbell’s	Neutral	Theory	of	Biodiversity.	33	

4. 	RPANDA	can	be	used	to:	i)	characterise	trees	by	plotting	their	spectral	density	34	

profiles	ii)	compare	trees	and	cluster	them	according	to	their	similarities,	iii)	35	

identify	and	plot	distinct	branching	patterns	within	trees,	iv)	compare	the	fit	of	36	

alternative	diversification	models	to	phylogenetic	trees,	ii)	estimate	rates	of	37	

speciation	and	extinction,	iii)	estimate	and	plot	how	these	rates	have	varied	with	38	

time	and	environmental	variables,	and	iv)	deduce	and	plot	estimates	of	species	39	

richness	through	geological	time.	40	
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5. RPANDA	provides	investigators	with	a	set	of	tools	for	exploring	patterns	in	41	

phylogenetic	trees	and	fitting	various	models	to	these	trees,	thereby	contributing	42	

to	the	on-going	development	of	phylogenetics	in	the	life	sciences.		43	

	44	
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Introduction		50	

Phylogenetic	approaches	have	become	a	central	component	of	various	areas	of	the	life	51	

sciences.	A	number	of	packages	are	available	to	handle	and	utilise	phylogenetic	trees	52	

(e.g.	‘ape’	Paradis	et	al.	2004),	in	order	to	understand,	for	example,	community	assembly	53	

(e.g.	‘picante’	Kembel	et	al.	2010,	‘DAMOCLES’	Pigot	&	Etienne	2015),	trait	evolution	(e.g.	54	

‘Coevol’	Lartillot	&	Poujol	2011,	‘geiger’	Pennell	et	al.	2014),	and	diversification	(e.g.	55	

‘BayesRate’	Silvestro	et	al.	2011,	‘TreePar’	Stadler	2011a,	‘diversitree’	Fitzjohn	2012,	56	

‘DDD’	Etienne	et	al.	2012,	‘geiger’	Pennell	et	al.	2014,	‘BAMM’	Rabosky	et	al.	2014).	57	

	 Here,	we	present	and	describe	the	R	package	RPANDA,	which	implements	both	58	

model-free	and	model-based	phylogenetic	approaches	that	are	not	implemented	in	59	

previous	packages.	The	model-free	approaches	are	inspired	from	graph	theory	and	60	

described	in	detail	in	Lewitus	&	Morlon	(2015).	They	are	designed	to	compare	and	61	

classify	phylogenetic	trees	without	any	a	priori	formulation	of	a	model	of	cladogenesis	62	

underlying	tree	shape.	The	model-based	approaches	aim	to	fit	various	models	of	63	

cladogenesis	to	phylogenetic	trees	by	maximum	likelihood.	They	are	described	in	detail	64	

in	Morlon	et	al.	(2010,	2011),	Condamine	et	al.	(2013)	and	Manceau	et	al.	(2015).	65	

Within	the	category	of	model-based	approaches,	the	package	includes	three	main	66	

classes	of	models:	birth-death	models,	coalescent	models,	and	individual-based	models	67	

(see	Morlon	2014	for	a	review	of	these	three	different	types	of	models).	Birth-death	68	

models	are	those	that	were	originally	considered	by	Nee	et	al.	(1992)	and	are	at	the	69	

basis	of	most	diversification	models	used	today.	The	present	package	allows	fitting	of	70	

birth-death	models:	i)	with	speciation	and	extinction	rates	varying	as	a	function	of	time,	71	

with	any	type	of	functional	form	and	with	potential	periods	of	diversity	decline	(Morlon	72	

et	al.	2011),	and	ii)	with	speciation	and	extinction	rates	varying	as	a	function	of	any	73	

variable	that	has	been	measured	through	geological	time	(e.g.,	temperature,	Condamine	74	
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et	al.	2013).	Models	based	on	the	coalescent	process	were	designed	to	consider	75	

scenarios	of	equilibrium	diversity	(Morlon	et	al.	2010).	Finally,	individual-based	models	76	

have	been	extensively	studied	in	ecology,	but	likelihood-based	inferences	from	77	

phylogenies	are	typically	not	available.	The	present	package	allows	likelihood	inference	78	

for	the	model	of	Speciation	by	Genetic	Differentiation	(Manceau	et	al.	2015),	which	is	an	79	

extension	of	the	Neutral	Theory	of	Biodiversity	(Hubbell	2001).		80	

	81	

Description	82	

RPANDA	is	an	R	package	(R	Development	Core	Team	2014)	than	can	be	installed	from	83	

the	CRAN	repository	(http://cran.r-project.org).	RPANDA	relies	on	the	R	packages	‘ape’	84	

(Paradis	et	al.	2004),	‘picante’	(Kembel	et	al.	2010),	‘phytools’	(Revell	2012),	‘deSolve’	85	

(Soetaert	et	al.	2010),	and	‘igraph’	(Csardi	&	Nepusz	2006).		86	

The	main	functions	of	the	package	are	listed	in	Table	1,	classified	into	functions	related	87	

to	the	model-free	and	model-based	approaches.	Nearly	every	function	is	associated	with	88	

a	‘plot’	function	that	helps	visualize	the	results	of	the	analyses.		89	

To	illustrate	the	use	of	RPANDA,	we	analyse	the	phylogeny	of	the	bat	family	90	

Phyllostomidae.	This	phylogeny	is	the	maximum	clade	credibility	tree	used	in	Rolland	et	91	

al.	(2014),	which	originally	comes	from	the	mammalian	supertree	(Bininda-Emonds	et	92	

al.	2007;	Fritz	et	al.	2009);	it	contains	150	of	the	165	known	bat	species	(i.e.,	it	is	91%	93	

complete).	To	begin,	we	open	an	R	console,	and	we	install	and	load	the	RPANDA	package	94	

as	well	as	the	example	datasets.	95	

> install.packages(‘RPANDA’,dependencies=TRUE) 96	

> library(RPANDA) 97	

> data(Phyllostomidae) 98	

> data(Phyllostomidae_genera) 99	
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‘Phyllostomidae’	is	the	family-level	phylogeny	and	‘Phyllostomidae_genera’	is	a	list	of	25	100	

phylogenies	corresponding	to	Phyllostomidae	genera	with	more	than	one	species. 101	

	102	

Characterising	and	comparing	phylogenies	using	spectral	densities	103	

We	recently	developed	a	new	approach,	described	in	detail	in	Lewitus	&	Morlon	(2015),	104	

to	efficiently	summarize	the	shape	of	a	phylogenetic	tree.	This	approach	can	be	used	to	105	

measure	similarities	between	trees	and	to	cluster	them	accordingly,	for	example	in	106	

order	to	identify	phylogenies	shaped	by	similar	versus	dissimilar	diversification	107	

patterns.	It	can	also	help	in	identifying	regions	of	a	tree	that	have	distinct	branching	108	

patterns,	which	can	for	example	reflect	shifts	in	modes	or	rates	of	diversification.	We	109	

summarize	the	shape	of	a	phylogeny	by	its	spectral	density,	which	is	a	smoothed	version	110	

of	the	frequencies	of	eigenvalues	associated	with	a	matrix	(the	graph	Laplacian)	built	111	

from	the	pairwise	phylogenetic	distances	between	nodes		(see	Lewitus	&	Morlon	2015	112	

for	a	more	detailed	description).	The	function	spectR computes	the	eigenvalues	113	

associated	with	a	given	phylogeny,	and	characteristics	associated	with	the	spectrum	of	114	

eigenvalues,	namely	the	principal	eigenvalue,	asymmetry	(skewness),	two	measures	of	115	

peakedness	(kurtosis	and	peak	height),	and	eigengap.	The	eigengap	is	given	by	the	116	

position	of	the	largest	difference	between	successive	eigenvalues	listed	in	descending	117	

order.	This	number	is	related	to	the	number	of	peaks	in	the	spectral	density	plot	and	is	118	

indicative	of	the	number	of	modalities	(i.e.	distinct	branching	patterns)	in	a	phylogeny.		119	

> res<-spectR(Phyllostomidae) 120	

returns	the	above	information	for	the	Phyllostomidae	phylogeny.	In	particular,	121	

res$eigengap	returns	the	number	of	modalities,	suggesting	three	distinct	branching	122	

patterns	in	this	bat	family.	 123	

> plot_spectR(res) 124	
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displays	the	spectral	density	profile	and	a	plot	of	the	eigenvalues	ranked	in	descending	125	

order	(Figure	1).		126	

	 Once	the	putative	number	of	modalities	is	identified,	the	BICompare function	127	

can	be	used	to	assess	the	significance	of	these	modalities	and	to	identify	their	location	128	

on	the	phylogeny.	The	statistical	significance	of	the	modalities	is	assessed	by	comparing	129	

the	Bayesian	Information	Criterion	(BIC)	for	detecting	i	clusters	in	the	distance	matrix	of	130	

the	empirical	phylogeny	and	in	randomly	bifurcating	trees	parameterized	on	that	tree	131	

(Lewitus	&	Morlon	2015).	The	function	also	identifies	the	location	of	the	distinct	132	

branching	patterns	on	the	phylogeny	by	k-means	clustering	and	returns	the	ratio	of	133	

between-cluster	sum	of	squares	(BSS)	to	total	sum	of	squares	(TSS)	for	the	clustering	134	

identified	by	the	algorithm.	The	highest	the	BSS/TSS	ratio,	the	more	distinct	the	135	

modalities	are	from	each	other.	Different	iterations	of	the	k-means	clustering	algorithm	136	

can	lead	to	different	modality	configurations,	and	BSS/TSS	values	allow	the	comparison	137	

between	these	configurations	(configurations	with	high	BSS/TSS	should	be	preferred).			138	

> res<-BICompare(Phyllostomidae,3) 139	

returns	the	above	information	for	the	Phyllostomidae	phylogeny.	The	BIC	score	for	the	140	

Phyllostomidae	phylogeny	is	nearly	a	magnitude	smaller	than	it	is	for	the	randomly	141	

bifurcating	trees	parameterized	on	that	phylogeny,	suggesting	that	the	three	modalities	142	

are	significant.	Typically,	a	BIC	ratio	≤	0.25	is	deemed	significant. 143	

> plot_BICompare(Phyllostomidae,res) 144	

displays	the	Phyllostomidae	phylogeny	with	branches	coloured	according	to	the	145	

modality	they	belong	to,	as	assessed	by	the	k-means	clustering	algorithm	(Figure	2).	146	

Spectral	densities	are	particularly	useful	for	comparing	phylogenies.	The	147	

JSDtree	function	computes	the	pairwise	distances	between	a	list	of	phylogenies,	148	

measured	as	the	Jensen-Shannon	distance	between	their	spectral	densities.	The	149	
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JSDtree_cluster	function	uses	these	pairwise	distances	(or	potentially	other	distance	150	

metrics)	to	cluster	phylogenies	into	groups.	The	clustering	is	implemented	using	the	151	

hierarchical	clustering	and	k-medoid	clustering	algorithms.	To	illustrate	this	approach,	152	

we	compare	the	25	phylogenies	corresponding	to	Phyllostomidae	genera	with	more	153	

than	one	species.	154	

> res<-JSDtree(Phyllostomidae_genera) 155	

returns	the	matrix	containing	the	pairwise	Jensen-Shannon	distances	between	the	25	156	

phylogenies.		157	

> JSDtree_cluster(res) 158	

plots	the	heatmap	and	hierarchical	cluster	(Figure	3)	as	well	as	the	hierarchical	cluster	159	

with	bootstrap	support	(not	shown	here).	It	also	returns	the	optimal	number	of	clusters	160	

given	by	the	k-medoids	algorithm,	here	suggesting	that	Phyllostomidae	genera	cluster	161	

into	two	meaningful	groups.	The	function	returns	the	assignment	of	each	phylogeny	to	162	

each	of	the	two	groups,	as	well	as	a	measure	of	statistical	support	for	this	assignment.	163	

	164	

Fitting	models	of	diversification	to	phylogenies	165	

One	of	the	most	popular	approaches	for	analysing	the	diversification	of	clades	consists	166	

in	fitting	various	models	of	diversification	to	molecular	phylogenies	using	maximum	167	

likelihood	inference,	comparing	the	likelihood	support	of	the	different	models,	and	168	

estimating	the	parameters	of	the	model	(see	Morlon	2014	for	a	review).	The	different	169	

types	of	functions	available	in	RPANDA	reflect	this	general	approach	(Table	1):		the	170	

‘likelihood’	functions	compute	the	likelihood	associated	with	different	171	

diversification	models,	the	‘fit’	functions	fit	the	corresponding	models	by	maximum	172	

likelihood,	and	the	‘plot’	functions	plot	estimates	of	how	various	variables	(e.g.	173	

speciation	and	extinction	rates,	species	richness)	have	varied	as	a	function	of	time	or	174	
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various	environmental	factors	(e.g.	temperature).	Simulating	phylogenies	under	the	175	

different	models	is	often	useful,	for	example,	to	test	the	power	of	the	approach	to	176	

recover	true	parameter	values	or	to	measure	type	I	&	II	error	rates.		We	do	not	generally	177	

provide	functions	to	simulate	phylogenies,	as	they	are	available	in	other	packages	such	178	

as	TreeSim	(Stadler	2011b)	and	TESS	(Höhna	2013).	The	one	exception	is	the	sim_sgd	179	

function	that	simulates	phylogenies	under	the	model	of	Speciation	by	Genetic	180	

Differentiation	(Manceau	et	al.	2015).	181	

	 Fitting	a	diversification	model	to	a	phylogeny	consists	in	finding	the	parameters	182	

that	maximize	the	likelihood	associated	with	the	model.	The	‘fit’	functions,	therefore,	183	

take	as	argument,	at	minimum,	a	phylogeny	(phylo),	initial	parameter	values	(par),	and	184	

the	maximization	algorithm	to	be	used	(meth).	The	various	likelihood	expressions	all	185	

depend	on	the	fraction	of	extant	species	that	are	sampled	in	the	phylogeny;	this	fraction	186	

(f),	therefore,	also	needs	to	be	specified.	Finally,	tot_time specifies	the	age	of	the	187	

phylogeny.	We	often	have	access	only	to	the	crown	age,	in	which	case	tot_time is	188	

given	by	max(node.age(phylo)$ages).	If	the	stem	age	is	known,	specifying	this	older	189	

age	in	tot_time	can	provide	a	different	and	complementary	inference.		190	

	191	

Time-dependent	diversification	models	192	

RPANDA	can	be	used	to	test	whether	(and	how)	diversification	rates	varied	through	193	

time	(Morlon	et	al.	2011).	To	illustrate	the	approach	we	fit	a	birth-death	model	with	194	

time-varying	rates	to	the	Phyllostomidae	phylogeny.	We	first	need	to	specify	the	195	

assumed	functional	form	of	the	time-dependency.	For	example,	if	we	want	to	fit	a	model	196	

with	an	exponential	variation	of	the	speciation	rate	with	time	(f.lamb),	and	a	constant	197	

extinction	rate	(f.mu),	we	define	these	functions	as	follows:				198	
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> f.lamb<-function(t,y){y[1]*exp(y[2]*t)} 199	

> f.mu<-function(t,y){y[1]} 200	

For	a	linear	dependency	of	the	speciation	rate,	the	function	would	be:	201	

> f.lamb.lin<-function(t,y){y[1]+y[2]*t} 202	

The	variable	t represents	time,	running	from	the	present	to	the	past,	while	the	variable	203	

y is	a	vector	containing	the	different	parameters	involved	in	the	definition	of	the	204	

temporal	dependency.	The	parameters	in	y are	therefore	the	parameters	that	will	be	205	

estimated	by	maximum	likelihood.	We	need	to	specify	initial	values	for	these	206	

parameters,	for	example	207	

> lamb_par_init<-c(0.05,0.01) 208	

sets	the	initial	parameter	values	defining	the	f.lamb	speciation	function,	and	209	

> mu_par_init<-c(0.005) 210	

sets	the	initial	parameter	values	defining	the	f.mu	extinction	function.	The	result	of	the	211	

fitting	procedure	should	not	depend	on	the	choice	of	the	initial	parameter	values,	which	212	

can	be	checked	by	running	the	model	with	several	sets	of	(realistic)	initial	values.	For	213	

example,	the	speciation	rate	at	present	(lamb_par_init[1])	typically	takes	value	214	

ranging	between	0.01	and	1	(event	per	lineage,	per	million	years).	The	rate	of	variation	215	

of	the	speciation	rate	(lamb_par_init[2])	can	then	be	chosen	such	that	the	resulting	216	

speciation	rate	(output	of	f.lamb(t,lamb_par_init)) remains	within	this	realistic	217	

range	throughout	the	clade	history	(i.e.	for	t	ranging	from	0	to	crown	or	stem	age).	And	218	

finally,	the	initial	extinction	parameters	set	in	mu_par_init	can	be	chosen	such	that	the	219	

resulting	extinction	rate	(output	of	f.mu(t,mu_par_init))	is	smaller	than	the	220	

speciation	rate	at	the	beginning	of	clade’s	history	(i.e.	for	t	set	to	the	crown	or	stem	age)	221	
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and	remains	positive	throughout	the	clade	history	(i.e.	for	t	ranging	from	0	to	crown	or	222	

stem	age).	223	

We	can	now	fit	the	model.	If	we	knew	the	stem	age	of	Phyllostomidae,	we	could	specify	224	

this	age	in	tot_time.	As	we	do	not	have	this	information,	we	define:	225	

> tot_time<-max(node.age(Phyllostomidae)$ages) 226	

Finally,	we	fit	the	model	by	maximum	likelihood	using	the	following	command:	227	

> res<-fit_bd(Phyllostomidae,tot_time,f.lamb,f.mu,lamb_par_init, 228	

mu_par_init,f=150/165,expo.lamb=TRUE,cst.mu=TRUE) 229	

The	two	options	expo.lamb=TRUE and	cst.mu=TRUE are	set	to	TRUE to	speed	up	the	230	

computation	by	using	analytical	solutions;	such	solutions	have	been	implemented	for	231	

exponential,	linear,	and	constant	functions.	If	the	options	are	set	to	TRUE when	the	232	

time-dependency	is	not	of	the	proper	form	(exponential,	linear,	or	constant),	the	code	233	

will	not	return	the	proper	answer.	When	in	doubt,	it	is	better	to	prefer	the	default	FALSE 234	

option.	There	is	an	additional	dt option	(not	used	in	the	examples	here)	that	can	also	235	

speed	up	the	computation	by	using	piecewise	constant	approximations	in	the	236	

computation	of	the	integrals.	There	is	also	an	option	that	specifies	whether	we	are	237	

working	with	crown	or	stem	ages,	which	has	consequences	for	the	conditioning	that	238	

should	be	used	in	the	computation	of	the	likelihood:	the	process	should	be	conditioned	239	

on	survival	when	working	with	stem	ages,	and	conditioned	on	a	speciation	event	at	the	240	

crown	and	survival	of	the	two	descending	lines	when	working	with	crown	ages	(Morlon	241	

et	al.	2011).	The	default	(used	here)	is	the	cond="crown" option,	but	it	should	be	set	to	242	

cond="stem" if	tot_time is	the	stem	age.	The	output	res of	the	fit	contains	the	243	

maximum	log-likelihood	value	(-469.36),	the	corrected	Akaike	information	criterion	244	

(AICc)	(944.89),	and	the	maximum	likelihood	parameter	estimates.	For	example,		245	
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>	res$lamb_par[1]	246	

returns	the	maximum	parameter	estimate	of	y[1],	which	is	the	speciation	rate	at	time	247	

t=0	,	i.e.	the	present	(here	0.099).	248	

>	res$lamb_par[2] 249	

returns	the	maximum	parameter	estimate	of	y[2],	which	is	the	rate	of	change	in	250	

speciation	rate,	with	time	running	from	the	present	to	the	past	(here	0.022).	A	positive	251	

rate	of	change	with	time	running	from	the	present	to	the	past	–	as	estimated	here	–	252	

suggests	a	negative	rate	of	change	(decline	in	speciation	rate)	during	the	clade’s	history.	253	

> plot_fit_bd(res,tot_time) 254	

returns	three	plots,	which	represent	speciation,	extinction	and	net	diversification	(i.e.	255	

speciation	minus	extinction)	rates	through	time	(Figure	4).	If	a	model	without	extinction	256	

is	fitted:	257	

>	f.mu<-function(t,y){0}	258	

> mu_par_init<-c()	259	

> res_noext<-fit_bd(Phyllostomidae,tot_time,f.lamb,f.mu, 260	

lamb_par_init,mu_par_init,f=150/165,expo.lamb=TRUE,fix.mu=TRUE) 261	

> plot_fit_bd(res_noext,tot_time) 262	

returns	two	plots,	which	represent	speciation	and	net	diversification	rates	through	time	263	

(in	this	case,	these	two	rates	are	equal).		264	

Once	estimates	of	the	temporal	variation	in	speciation	and	extinction	rates	have	been	265	

obtained	(as	described	above),	estimates	of	how	species	richness	varied	through	time	266	

can	be	computed	by	resolving	the	appropriate	differential	equation	(Morlon	et	al.	2011;	267	

Morlon	2014).	268	

> plot_dtt(res,tot_time,N0=165) 269	
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plots	the	result	of	this	estimation	procedure,	as	illustrated	in	Figure	5.	270	

	271	

Environmental-dependent	diversification	models	272	

RPANDA	can	also	be	used	to	test	the	potential	effect	that	past	environmental	conditions	273	

had	on	diversification	(Condamine	et	al.	2013).	Fitting	the	environmental-dependent	274	

birth-death	model	is	very	similar	to	fitting	the	time-dependent	birth-death	model.	In	275	

addition	to	a	phylogeny,	this	model	requires	knowledge	(typically	an	estimate)	of	how	a	276	

given	environmental	variable	varied	through	time.	The	example	provided	in	RPANDA	is	277	

temperature	variation	through	the	Cenozoic,	estimated	using	oxygen	isotope	ratios	278	

(Zachos	et	al.	2008).	We	begin	by	loading	the	temperature	data:		279	

> data(InfTemp) 280	

InfTemp is	a	two-column	dataframe	in	which	the	first	column	reports	time	(measured	281	

from	the	present	to	the	past)	and	the	second	column	reports	the	corresponding	282	

estimated	temperature	at	each	time	(Condamine	et	al.	2013).	Any	other	(abiotic	or	283	

biotic)	environmental	variable	in	this	format	can	be	used	in	place	of	InfTemp	in	order	to	284	

test	the	potential	effect	that	this	variable	had	on	diversification	(e.g.	sea-level	285	

fluctuations,	Condamine	et	al.	2015).	Here,	diversification	rates	can	depend	on	time	as	286	

well	as	on	the	environmental	variable;	the	f.lamb	and	f.mu	functions	therefore	take	287	

two	arguments	(time	t	and	the	environmental	variable	x) in	addition	to	the	parameters	288	

y	to	be	estimated.	We	fit	a	simple	model	with	an	exponential	dependence	of	the	289	

speciation	rate	on	the	environmental	variable,	no	time	dependence,	and	no	extinction.	290	

We	thus	define:	291	

> f.lamb<-function(t,x,y){y[1]*exp(y[2]*x)} 292	

and	293	
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> f.mu<-function(t,x,y){0} 294	

as	well	as	initial	parameter	estimates:	295	

> lamb_par_init<-c(0.10,0.01) 296	

> mu_par_init<-	c() 297	

Finally,	we	fit	the	model:		298	

> res<-fit_env(Phyllostomidae,InfTemp,tot_time,f.lamb,f.mu, 299	

lamb_par_init,mu_par_init,f=150/165,fix.mu=TRUE,dt=1e-3) 300	

Note	that	we	do	not	use	the	option	expo.lamb=TRUE, as	f.lamb is	an	exponential	301	

function	of	the	environmental	variable,	not	an	exponential	function	of	time.	Setting	302	

expo.lamb to TRUE	would	yield	spurious	results.	However,	we	can	speed	up	the	303	

computation	by	specifying	dt=1e-3,	which	uses	a	piece-wise	constant	approximation	in	304	

the	evaluation	of	integrals.	The	output	res of	the	fit	contains	the	maximum	log-305	

likelihood	value	(-468.44),	the	AICc	(940.97),	and	the	maximum	likelihood	parameter	306	

estimates.	For	example,	307	

>	res$lamb_par[1] 308	

returns	the	maximum	parameter	estimate	of	y[1],	which	is	the	speciation	rate	that	309	

would	correspond	to	a	temperature	of	0°C	(here	0.077).	310	

>	res$lamb_par[2]	311	

returns	the	maximum	parameter	estimate	of	y[2],	which	is	the	rate	of	change	in	312	

speciation	rate	with	temperature	(here 0.083). A	positive	value	thus	suggests	a	313	

positive	effect	of	the	environmental	variable	(here	temperature)	on	speciation	rates.	314	

Note	that	the	environmental	model	fitted	here	receives	a	better	support	than	the	model	315	

with	an	exponential	dependency	of	speciation	rate	with	time	(∆AICc	=	944.89	-	940.97	=	316	

3.92).	317	
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> plot_fit_env(res,InfTemp,tot_time) 318	

plots	diversification	rates	as	a	function	of	the	environmental	variable	and	time	(Figure	319	

6).	320	

 321	

The	model	of	Speciation	by	Genetic	Differentiation	322	

RPANDA	also	contains	functions	to	fit	a	modified	version	of	Hubbell’s	neutral	model	of	323	

biodiversity	(Hubbell	2001):	the	model	of	Speciation	by	Genetic	Differentiation,	which	is	324	

described	in	detail	in	Manceau	et	al.	2015.	We	can	fit	the	model	following	a	similar	325	

procedure.	The	model	is	individual-based,	and	involves	parameters	describing		326	

the	birth	and	death	of	individuals,	as	well	as	a	per-individual	mutation	rate.		We	define	327	

initial	parameter	values	for	the	birth,	growth	(birth	minus	death),	and	mutation	rates	328	

(given	in	events	per	Myr	if	the	branch	lengths	of	the	phylogeny	are	measured	in	Myrs),	329	

for	example:	330	

	> par_init<-c(1e7, 1e7-0.5, 0.8) 331	

We	can	then	fit	the	model	(this	takes	more	time	than	the	previous	examples,	as	332	

computing	likelihoods	requires	integrating	a	set	of	coupled	differential	equations	along	333	

the	tree,	Manceau	et	al.	2015)	:	334	

> fit_sgd(Phyllostomidae, tot_time, par_init, f=150/165) 335	

returns	the	maximum	log-likelihood	(-466),	the	AICc	(938),	and	the	estimated	birth	336	

(1e7),	growth	(0.157),	and	mutation	(0.198)	rates.	As	explained	in	Manceau	et	al.	337	

(2015),	the	likelihood	surface	is	quite	flat	with	respect	to	the	birth	rate,	such	that	this	338	

parameter	cannot	be	estimated	with	confidence.	Birth	rate	estimates	are	thus	sensitive	339	

to	the	choice	of	the	initial	parameter	values	and	should	not	be	trusted.			340	

	341	
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Resources		342	

RPANDA	is	an	open	source	package	available	for	download	on	the	CRAN	repository	at	343	

https://cran.r-project.org/web/packages/RPANDA/index.html.	It	includes	illustrative	344	

data	and	a	detailed	manual.	The	package	is	constantly	evolving.	Bayesian	345	

implementations	and	functions	that	allow	fitting	new	models	of	phenotypic	evolution,	346	

such	as	the	matching	competition	model	(Drury	et	al.	2015),	are	already	under	347	

development.	Contributions	are	welcome;	automatic	tests	have	been	implemented	to	348	

facilitate	a	collaborative	development	and	to	insure	the	replicability	of	results.		The	most	349	

recent	version	is	available	on	github	at	https://github.com/hmorlon/PANDA.	350	
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Table	1.	Major	functions	available	in	RPANDA	435	

Function	 Description	

Characterising	and	comparing	phylogenies	using	spectral	densities	

BICompare	 computes	BIC	values	assessing	the	support	of	modalities	in	a	phylogeny		

JSDtree	 computes	the	Jensen-Shannon	distance	between	phylogenies	

JSDtree_cluster	 clusters	phylogenies	using	hierarchical	and	k-medoids	clustering		

spectR	 computes	the	eigenvalues	of	a	phylogeny,	and	returns	the	principal	

eigenvalue,	the	skewness,	and	kurtosis	of	the	spectral	density	profile,	and	

the	eigengap	

plot_BICompare	 plots	modalities	on	a	phylogenetic	tree		

plot_spectR	 plots	the	spectral	density	and	eigenvalues	of	a	phylogeny	ranked	in	

descending	order	

Fitting	models	of	diversification	to	phylogenies	

fit_bd	 fits	a	birth-death	model	to	a	phylogeny	

fit_coal_cst	 fits	an	equilibrium	model	with	constant	diversity	through	time	to	a	

phylogeny,	using	the	coalescent	model	

fit_coal_var	 fits	a	model	with	expanding	diversity	through	time	to	a	phylogeny,	using	

the	coalescent	model	

fit_env	 fits	a	birth-death	model	with	environmental	dependency	to	a	phylogeny	
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fit_sgd	 fits	the	model	of	Speciation	by	Genetic	Differentiation	to	a	phylogeny			

likelihood_bd	 computes	the	likelihood	corresponding	to	the	birth-death	model		

likelihood_coal_cst	 computes	the	likelihood	corresponding	to	the	coalescent	model	with	

constant	diversity	through	time		

likelihood_coal_var	 computes	the	likelihood	corresponding	to	the	coalescent	model	with	

expanding	diversity	through	time	

likelihood_sgd	 computes	the	likelihood	corresponding	to	the	model	of	Speciation	by	

Genetic	Differentiation	

plot_fit_bd	 plots	diversification	rates	through	time	curves	

plot_fit_env	 plots	diversification	rates	as	a	function	of	one	or	several	environmental	

variables	and	time		

plot_dtt	 computes	and	plots	diversity	through	time	curves		

sim_sgd	 simulates	a	phylogeny	arising	from	the	model	of	Speciation	by	Genetic	

Differentiation		

		436	

	 	437	
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Figure	1	Spectral	density	plot	of	the	Phyllostomidae	(left	panel)	and	corresponding	438	

eigenvalues	ranked	in	descending	order	(right	panel).	There	is	a	clear	gap	between	the	439	

third	and	fourth	eigenvalue	(indicated	by	an	arrow),	suggesting	three	modes	of	division	440	

in	the	phylogeny.	441	

	442	

Figure	2	Phyllostomidae	phylogeny	with	branches	coloured	according	to	the	3	443	

branching	patterns	(or	modalities)	identified	by	the	eigengap,	as	given	by	k-medoid	444	

clustering.				445	

	446	

Figure	3	Heatmap	and	hierarchical	cluster	showing	the	pairwise	similarities	between	447	

the	25	Phyllostomidae	genera	with	more	than	one	species.	448	

	449	

Figure	4	Plots	showing	the	estimated	a)	speciation,	b)	extinction,	and	c)	net	450	

diversification	rates	through	time	for	the	Phyllostomidae	phylogeny,	output	of	the	451	

plot_fit_bd	function.	452	

	453	

Figure	5	Plot	showing	the	estimated	accumulation	of	species	richness	through	time	for	454	

the	Phyllostomidae	phylogeny,	output	of	the	plot_dtt	function.	455	

	456	

Figure	6	Plots	showing	the	estimated	speciation	(a,b)	and	net	diversification	(c,d)	rates	457	

as	a	function	of	time	(a,c)	and	temperature	(b,d)	for	the	Phyllostomidae	phylogeny,	458	

output	of	the	plot_fit_env	function.	459	

	460	


