1,064 research outputs found

    The Sequence Alignment/Map format and SAMtools

    Get PDF
    Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments

    ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data

    Get PDF
    Summary: ShortRead is a package for input, quality assessment, manipulation and output of high-throughput sequencing data. ShortRead is provided in the R and Bioconductor environments, allowing ready access to additional facilities for advanced statistical analysis, data transformation, visualization and integration with diverse genomic resources

    Prospectus, April 10, 1985

    Get PDF
    https://spark.parkland.edu/prospectus_1985/1009/thumbnail.jp

    Diagnostic applications of next generation sequencing: working towards quality standards

    Get PDF
    Over the past 6 years, next generation sequencing (NGS) has been established as a valuable high-throughput method for research in molecular genetics and has successfully been employed in the identification of rare and common genetic variations. All major NGS technology companies providing commercially available instruments (Roche 454, Illumina, Life Technologies) have recently marketed bench top sequencing instruments with lower throughput and shorter run times, thereby broadening the applications of NGS and opening the technology to the potential use for clinical diagnostics. Although the high expectations regarding the discovery of new diagnostic targets and an overall reduction of cost have been achieved, technological challenges in instrument handling, robustness of the chemistry and data analysis need to be overcome. To facilitate the implementation of NGS as a routine method in molecular diagnostics, consistent quality standards need to be developed. Here the authors give an overview of the current standards in protocols and workflows and discuss possible approaches to define quality criteria for NGS in molecular genetic diagnostics

    Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions

    Get PDF
    The rapid development of next generation sequencing (NGS) technology provides a new chance to extend the scale and resolution of genomic research. How to efficiently map millions of short reads to the reference genome and how to make accurate SNP calls are two major challenges in taking full advantage of NGS. In this article, we reviewed the current software tools for mapping and SNP calling, and evaluated their performance on samples from The Cancer Genome Atlas (TCGA) project. We found that BWA and Bowtie are better than the other alignment tools in comprehensive performance for Illumina platform, while NovoalignCS showed the best overall performance for SOLiD. Furthermore, we showed that next-generation sequencing platform has significantly lower coverage and poorer SNP-calling performance in the CpG islands, promoter and 5′-UTR regions of the genome. NGS experiments targeting for these regions should have higher sequencing depth than the normal genomic region

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    DGIdb 5.0: Rebuilding the Drug-Gene Interaction Database for precision medicine and drug discovery platforms

    Get PDF
    The Drug-Gene Interaction Database (DGIdb, https://dgidb.org) is a publicly accessible resource that aggregates genes or gene products, drugs and drug-gene interaction records to drive hypothesis generation and discovery for clinicians and researchers. DGIdb 5.0 is the latest release and includes substantial architectural and functional updates to support integration into clinical and drug discovery pipelines. The DGIdb service architecture has been split into separate client and server applications, enabling consistent data access for users of both the application programming interface (API) and web interface. The new interface was developed in ReactJS, and includes dynamic visualizations and consistency in the display of user interface elements. A GraphQL API has been added to support customizable queries for all drugs, genes, annotations and associated data. Updated documentation provides users with example queries and detailed usage instructions for these new features. In addition, six sources have been added and many existing sources have been updated. Newly added sources include ChemIDplus, HemOnc, NCIt (National Cancer Institute Thesaurus), Drugs@FDA, HGNC (HUGO Gene Nomenclature Committee) and RxNorm. These new sources have been incorporated into DGIdb to provide additional records and enhance annotations of regulatory approval status for therapeutics. Methods for grouping drugs and genes have been expanded upon and developed as independent modular normalizers during import. The updates to these sources and grouping methods have resulted in an improvement in FAIR (findability, accessibility, interoperability and reusability) data representation in DGIdb

    Compression of Structured High-Throughput Sequencing Data

    Get PDF
    Large biological datasets are being produced at a rapid pace and create substantial storage challenges, particularly in the domain of high-throughput sequencing (HTS). Most approaches currently used to store HTS data are either unable to quickly adapt to the requirements of new sequencing or analysis methods (because they do not support schema evolution), or fail to provide state of the art compression of the datasets. We have devised new approaches to store HTS data that support seamless data schema evolution and compress datasets substantially better than existing approaches. Building on these new approaches, we discuss and demonstrate how a multi-tier data organization can dramatically reduce the storage, computational and network burden of collecting, analyzing, and archiving large sequencing datasets. For instance, we show that spliced RNA-Seq alignments can be stored in less than 4% the size of a BAM file with perfect data fidelity. Compared to the previous compression state of the art, these methods reduce dataset size more than 40% when storing exome, gene expression or DNA methylation datasets. The approaches have been integrated in a comprehensive suite of software tools (http://goby.campagnelab.org) that support common analyses for a range of high-throughput sequencing assays.National Center for Research Resources (U.S.) (Grant UL1 RR024996)Leukemia & Lymphoma Society of America (Translational Research Program Grant LLS 6304-11)National Institute of Mental Health (U.S.) (R01 MH086883
    corecore