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SUMMARY

Herein, we report an oral cavity squamous cell carci-
noma (OCSCC) patient-derived xenograft (PDX) plat-
form, with genomic annotation useful for co-clinical
trial and mechanistic studies. Genomic analysis
included whole-exome sequencing (WES) and tran-
scriptome sequencing (RNA-seq) on 16 tumors and
matched PDXs and additional whole-genome
sequencing (WGS) on 9 of these pairs as a represen-
tative subset of a larger OCSCC PDX repository
(n = 63). In 12 models with high purity, more than
90% of variants detected in the tumor were retained
in the matched PDX. The genomic landscape across
these PDXs reflected OCSCCmolecular heterogene-
ity, including previously described basal, mesen-
chymal, and classical molecular subtypes. To
demonstrate the integration of PDXs into a clinical
trial framework, we show that pharmacological inter-
vention in PDXs parallels clinical response and ex-
tends patient data. Together, these data describe a
repository of OCSCC-specific PDXs and illustrate
conservation of primary tumor genotypes, intratu-
moral heterogeneity, and co-clinical trial application.

INTRODUCTION

Oral cavity squamous cell carcinomas (OCSCCs) are a global

health problem, with more than 500,000 reported cases per

year. Despite major advances in surgical techniques and

chemo-radiotherapy, outcomes for patients with locally

advanced disease have remained unchanged at 30% local or

regional disease recurrence, 25% distant metastases, and

40% overall 5-year survival (Chinn and Myers, 2015; Zhang

et al., 2013). Molecular characterization using next-generation

sequencing has broadened our understanding of common

OCSCC genomic alterations and carcinogenesis (Cancer

Genome Atlas Network, 2015; India Project Team of the Interna-

tional Cancer Genome Consortium, 2013; Pickering et al., 2013).

Precision medicine approaches targeting specific pathways

implicated in OCSCC are in early stages, with validation studies

pending for a number of oncogenic dependencies (Hammerman

et al., 2015). These large-scale studies would benefit from addi-

tional insight obtained using in vivomodels that capture the com-

plex genetic background of OCSCC.

Patient-derived xenografts (PDXs) represent a high-fidelity,

personalized model for pre-clinical testing and validation of tar-

geted therapeutics (Hammerman et al., 2015; Hidalgo et al.,

2014). In addition, they provide a valuable resource for the study

of intratumoral heterogeneity and clonal dynamics (Eirew et al.,

2015; Hammerman et al., 2015; Hidalgo et al., 2014). A recent

study of more than 1,000 diverse tumor xenografts integrated

into a PDX clinical trial (PCT) framework revealed the fidelity of

xenografts in confirming multiple genotype relationships with

drug sensitivities (Gao et al., 2015). This study included seven

PDXs derived from head and neck squamous cell carcinomas

(HNSCCs). Three studies have reported initial engraftment rates

for HNSCCPDXs ranging from 17%–80%but included the use of

distinct immunodeficient mouse strains (Keysar et al., 2013;

Li et al., 2016; Peng et al., 2013). Another study analyzed gene

expression of matched primary tumors and PDXs showing vari-

able levels of conservation, but this was limited to three cases

(Guo et al., 2016; Peng et al., 2013). Interestingly, studies in

larger HNSCC PDX cohorts have shown that engraftment suc-

cess has no relation to pathologic stage or clinical behavior of

the primary tumor (Keysar et al., 2013; Li et al., 2016). Large

PDX collections are critical to capturing the population-wide

genomic alterations that are obscured in analysis of smaller
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cohorts (Gao et al., 2015). However, existing OCSCC-specific

PDX models have not been comprehensively defined to suffi-

ciently depict the heterogeneous disease landscape.

Herein we describe a cohort of OCSCC xenografts derived

from patients who have undergone standard-of-care surgery or

who enrolled in neoadjuvant trametinib or pembrolizumab clin-

ical trials. We performed sequencing analysis on 16 case-

matched tumors and PDXs, which displayed genomic and tran-

scriptomic fidelity to their respective tumors. While maintaining

the mutational landscape displayed in their matched primary

tumors, these PDXs also captured the molecular and genomic

diversity of OCSCC at the cohort level. Our study also reports

a larger OCSCC PDX repository (n = 63), which includes the

subset (n = 16) with comprehensive molecular annotation re-

ported here, that will serve as a platform for evaluating novel

therapeutic approaches as well as deepen our understanding

of the genomic and transcriptomic parallels between tumors

and PDXs.

RESULTS

Generation of Xenografts
In 2013, we initiated a PDX study for OCSCC across 114

patients from three cohorts: treatment-naive primary OCSCC

patients undergoing standard-of-care primary resection (n =

84), patients enrolled in a neoadjuvant trametinib clinical trial

(ClinicalTrials.gov: NCT01553851; n = 20) (Uppaluri et al.,

2017), and patients enrolled in a neoadjuvant pembrolizumab

clinical trial (ClinicalTrials.gov: NCT02296684; n = 10, data not

published). PDXs were attempted from treatment-naive tumor

samples from all patients (n = 114), post-treatment surgical

resections from patients enrolled in the trametinib clinical trial

(n = 20) or the pembrolizumab clinical trial (n = 10), and patients

with relapsed disease (n = 3). Overall, establishment of passage

0 (P0)-generation xenografts was successful in 63 tumor

samples, including 45 of 114 (39.4%) treatment-naive, 10 of 20

(50%) post-trametinib treated, 5 of 10 (50%) post-pembrolizu-

mab treated, and 3 relapse (Tables 1 and S1). PDXs were har-

vested once the tumor size reached 2 cm3, with a median time

to harvest of 85 days (range, 27–281 days).

Because our goal was to develop aPDX repository for genomic

and functional studies, we collected clinical and pathologic infor-

mation only on samples that successfully engrafted as P0 PDXs.

Demographics showed that 46 tumor specimenswere frommale

patients and 17 tumor specimens were from female patients

(Tables 1andS1). PDXswere successfully established for 3 stage

I and II, 10 stage III, and 32 stage IV primary (treatment-naive) tu-

mors. At time of biopsy or surgery, patients were 18–87 years of

age (median, 63 years). In addition, the xenograft time to harvest,

when used as a measure of how aggressively the xenograft

grows, was not significantly different across tumor stages. Path-

ologic evaluation of the PDXs was consistent with squamous cell

carcinoma histology (data not shown).

Genomic Analysis
Clinicopathological Summary of Sequenced Samples

We selected 16 PDXs (25%of the repository) formolecular anno-

tation using whole-genome sequencing (WGS), whole-exome

sequencing (WES), and/or transcriptome sequencing (RNA-

seq). WES and RNA-seq were obtained for 16 case-matched

tumors and P0 PDXs; WGS was obtained for 9 matched tumors

and PDXs (Tables 1 and S1). Of these 16 xenografts, 13 were

derived from primary untreated tumors, 1 was derived from a

relapse tumor, and 2 were derived from a paired primary and

relapse tumor. The cohort of sequenced PDXs did not signifi-

cantly differ from the larger cohort of established OCSCC

PDXswith regard to stage, age, and gender. There was no signif-

icant difference in the xenograft time to harvest between the

sequenced PDXs and the remainder of the cohort.

Mouse Contamination in Xenografts

Mouse cells were not sorted from PDX samples prior to nucleic

acid isolation for sequencing. Xenograft purity was defined as

the percentage of sequencing reads that specifically align to

the human reference genome in comparison with the mouse

reference genome. Mouse contamination was highest in WGS

data (9.7%–55.6%mouse-specific reads), followed by RNA-seq

(5.4%–39.7%) and finally exome data (0.7%–35%), reflecting the

successful enrichment of human DNA by the hybridization-

based capture reagent (Figure S1). A negligible number of reads

were classified as ‘‘both,’’ ‘‘neither,’’ or ‘‘ambiguous’’ on the ba-

sis of the level of certainty that reads map to either human

genome,mouse genome, or neither. Reads classified as ‘‘mouse

specific,’’ ‘‘both,’’ ‘‘neither,’’ or ‘‘ambiguous’’ were filtered out of

Table 1. Clinical Summary of Patient Samples

Repository

(n = 63)

Sequenced

Subset (n = 16)

Patient Cohort

Standard-of-care resection 34 (54%) 6 (38%)

Trametinib trial 22 (35%) 10 (63%)

Pembrolizumab trial 7 (11%) –

Tumor Status

Treatment-naive 45 (71%) 14 (88%)

Post-treatment 15 (24%) –

Relapse 3 (5%) 2 (13%)

Stage

I 3 (5%) –

II 2 (3%) –

III 12 (19%) 3 (19%)

IV 45 (71%) 13 (81%)

Age (years)

Below 40 4 (6%) 2 (13%)

40–59 22 (35%) 6 (38%)

60–79 29 (46%) 7 (44%)

Over 80 8 (13%) 1 (6%)

Gender

Male 46 (73%) 12 (75%)

Female 17 (27%) 4 (25%)

Overall, 63 PDXs were generated from 53 patients. In some cases, mul-

tiple PDXs were derived from the same patient at various time points.

Numbers (n) reflect number of xenografts associated. Refer to Table S1

for additional information.
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the sequencing data, and all subsequent analysis was performed

on the reads classified as ‘‘human specific.’’

Sequencing Results

WGSmedian sequence coverage was 263 for PDXs, 753 for tu-

mors, and 373 for normal samples. WES resulted in at least 203

coverage over an average of 91.5% of the targeted exome in

PDXs, 96.6% in tumors, and 95.2% in normal samples and an

average depth of 82.43 in PDXs, 81.23 in tumors, and 66.23

in normal samples. The total number of reads generated by

RNA-seq ranged from 89.5 million to 767million, with an average

of 391 million reads in tumor samples and 226 million reads in

PDX samples. Metrics for PDXs correspond to human-specific

reads, after competitive alignment with the mouse genome.

The Landscape of Somatic Mutations Is Conserved in
Most OCSCC PDXs
Somatic alterations detected by WGS, WES, and/or RNA-seq

were compared for the 16 pairs of OCSCC PDXs and case-

matched tumors. There were 2,414 non-silent coding single-

nucleotide variants (SNVs) and small insertions and deletions

(indels) detected in 14 primary tumors (Table S2; Figure S2A).

Of these, 1,929 (79.9%) were also identified in matched PDXs

with sufficient coverage (203) and variant allele fraction (VAF;

5%). Our somatic validation pipeline subjects variant calling to

additional filtering on the basis of sequencing coverage and

read support. Variants were identified independently in tumors

and PDXs, and then the union of these events was re-analyzed

in both samples to detect and recover variants with low

sequencing coverage and/or VAF. An additional 231 variants

(9.6%) originally detected in primary tumors were accounted

for in the PDXs. Overall, 89.5% of all variants identified in primary

tumors were also detected in their matched PDXs (Figures 1A

and 1B). In the 2 relapse tumors, 220 non-silent SNVs and indels

were identified; however, 119 (54.1%) were confirmed in

matched PDXs, and only 19 (8.6%) were recovered by reducing

sequencing depth and VAF filters. Overall, only 62.7%of variants

detected in relapse tumors and their matched PDXs were shared

(Figures 1A and 1B).

PDXs were compared with their respective tumors on the ba-

sis of the percentage of tumor variants maintained in their

respective PDXs and linear regression across the VAF distribu-

tions (Figure 1C). This analysis was restricted to variants that

had at least 203 coverage in both tumor and PDX samples.

Twelve PDXs (75%) retained at least 90% of the variants

detected in their respective tumors. Two of the remaining four

tumors (patients 2 and 6 primaries) had relatively higher corre-

lation in VAF distribution (R2 = 0.788 and 0.697, respectively)

of shared variants, the other two (patient 15 primary, patient

14 relapse) had the lowest correlation coefficients (R2 = 0.174

and 0.227, respectively) but also had much lower tumor cellu-

larity in the tumor sample (less than 50%). Overall, the correla-

tion in VAF distribution was lower in relapse cases (0.23–0.73;

median, 0.48; n = 2) than primary cases (0.17–0.84; median,

0.65; n = 14). However, these aggregate metrics are reduced

because of the cellularity of patient 14’s relapse tumor, which

had the lowest tumor purity (�25%).

We next evaluated our PDX cohort for conservation of variants

in previously described significantly mutated genes for the

HNSCC TCGA (The Cancer Genome Atlas) cohort (Cancer

Genome Atlas Network, 2015). There were 47 mutations identi-

fied across 12 of the genes described as significantly mutated

genes from the TCGA HNSCC cohort (Cancer Genome Atlas

Network, 2015), and 44 were detected in both tumors and

PDXs across 16 tumors (1–5 mutations per patient; median, 2).

The reported cohort included mutations in TP53 (n = 12 primary,

n = 2 relapse), NOTCH1 (n = 3 primary), KMT2D (n = 2 primary),

HRAS (n = 2 primary), FAT1 (n = 2 primary), CDKN2A (n = 4

primary, n = 2 relapse), CASP8 (n = 3 primary, n = 1 relapse).

Mutations were also detected in AJUBA, CUL3, FBXW7,

NSD1, and PIK3CA, each in only one primary sample. In 15

of these tumors, all putative driver mutations were preserved,

while indels in FAT1 were observed in either the relapse tumor

or PDX from patient 14. Despite variance in the correlation

coefficient across the cohort, putative drivers that have been

previously described in HNSCC were maintained (Table S2;

Figure S2).

OCSCC PDXs Do Not Exhibit Rapid Accumulation of
Mutations Post-engraftment
In order to evaluatewhethermutations could have been acquired

after engraftment, we identified variants in PDXs that were unde-

tectable in the primary tumors. There were 149 PDX-specific

variants across the 14 primary PDXs, 76 (51%) of which were

expressed in the RNA; there were 41 PDX-specific variants de-

tected in 2 relapse PDXs, 20 (48.8%) of which were expressed

in the RNA (Figure 1B). Of the 190 variants exclusively detected

in PDXs, 4 (2.1%) had 0–203 coverage in their respective tu-

mors, but the coverage of the genomic positions of PDX-specific

variants in tumors (0–6723; median, 1643) was not significantly

different from the coverage of these variants in PDXs (20–5253;

median, 88.53). Thirty-seven of the 190 variants (19.5%) were

detected at%5%VAF in the PDX. However, to consider whether

PDX-only mutations were acquired post-engraftment, we evalu-

ated the clinical significance and potential implication in tumori-

genesis. Of the 190 PDX-only variants, only 2 were described as

recurrently mutated in the TCGA cohort. Both variants were

frameshift indels in FAT1 in the patient 14 relapse PDXs, present

at 53% and 61% VAF, respectively. Only one of these was

expressed at the RNA level (32.3% VAF). It is important to note

that the patient 14 relapse tumor had the lowest purity (�25%)

and had the second lowest correlation coefficient in VAF distri-

bution with its respective PDX.

Studies evaluating the genomic integrity of PDX models

across tumor types have described the selective pressure

and/or accumulation of mutations over several passages. In

order to address this question of selective engraftment and pres-

sure to acquire mutations via passaging, the parental xenograft

(P0) generated from patient 13 was passaged twice in NSG

mice. Three PDXs from the P2 generation were studied by

WES. Of the 104 variants detected in the primary tumor, 90

(86%) were detected in the parental PDX. Out of the 90 variants

confirmed in P0, 85–87 (94%–97%) were subsequently detected

in the P2 generation PDXs (Table S2). There were 7 variants

detected in the P0 PDX that were undetectable in the primary

tumor, 6 of which were also detected in all three P2 PDXs. There

were 11 variants detected in P2 PDXs that were not detected in
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either the primary tumor or the P0 PDX; 5 of these variants were

present in all P2 PDXs (VAF = 4.44%–27.78%). Six of these var-

iants were specific to one or two of the P2 PDXs, all present at

less than 10% VAF. However, overall, correlation across all var-

iants remained 0.85–0.88 between all PDXs and the primary

tumor.

Large and Focal Copy-Number Alterations Are Retained
upon Engraftment
Absolute copy number was calculated by comparing either

tumor or PDX data with matched normal data and evaluated

on the basis of 10 kb windows across the genome. In order

to evaluate whether copy-number alterations (CNAs) were

conserved at the genome-wide scale, we calculated the corre-

lation between all case-matched PDXs and tumors. The Pear-

son correlation coefficient between matched tumors and

PDXs ranged from 0.3 to 0.97 (median, 0.72; median, 0.08 for

unmatched samples; Figure 2A). We found that correlation

between samples was significantly higher in matched PDXs

and tumors than in comparison with any other pair of samples

(p = 2.88e-07; Figure 2B). There were six samples that had rela-

tively low Pearson correlation coefficients (r < 0.60). Of these

six samples, one (patient 14, relapse, r = 0.561) had low tumor

purity (25%). Two (patients 5 and 8) had very low correlation

coefficients (r = 0.034 and r = 0.049, respectively). Interestingly,

these two patients also had the highest mutational burdens

(n = 445 and n = 327, respectively). Lack of correlation might

again be attributable to lower cellularity and/or cases with large

Figure 1. Mutations Are Overall Conserved in PDXs

(A) Venn diagram of all variants detected in primary or relapse tumors and their respective PDXs.

(B) Alluvial plots displaying variants detected in either ‘‘tumor,’’ PDX, or ‘‘both.’’ Variants are labeled ‘‘detected’’ if they have sufficient sequencing depth (203) and

VAF (5%); ‘‘low coverage’’ or ‘‘low VAF’’ if they are detected but do not meet one of these filters; ‘‘undetected, low coverage’’ if they are undetected and have

insufficient coverage; and ‘‘undetected’’ if the variant is undetected at a position with sufficient coverage.

(C) Scatterplots displaying the correlation between PDX DNA VAF and tumor DNA VAF. Samples are designated ‘‘R,’’ corresponding to ‘‘relapse’’ samples.

Points are colored on the basis of which samples the variant was detected in; gray points indicate variants for which there was <203 coverage in either the

tumor or PDX sample. The R2 value (of common points with at least 203 coverage in both samples) is represented by the red value in the lower right-hand

corner of each plot. The linear regression line is indicated in red with boundaries showing the SD of points. The bar charts on the right of each plot indicate the

proportion of common versus sample-specific variants, as well as those with less than 203 coverage in either the tumor or matched xenograft sample (indicated

in gray).

Refer to Figure S2 and Table S2 for further details.
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numbers of somatic alterations possibly indicative of increased

genomic instability.

Recurrent CNAs included gains in chromosomes 8q (n = 7), 5p

(n = 5), and 3q (n = 4) and losses in chromosomes 8p (n = 6) and

3p (n = 5) (Figure S2B), consistent with previous studies (Cancer

Genome Atlas Network, 2015). We also evaluated genes known

to be contained in focal CNAs (Figures 2C and S2C). We de-

tected amplifications of CCND1 (n = 7), EGFR (n = 4), FGFR1

(n = 1), KRAS (n = 2), and PIK3CA (n = 2) and loss of CDKN2A/

CDKN2B (n = 6) in tumors and their respective PDXs. In most

cases, CNAs (segment mean > 3 for amplifications, segment

mean < 1.5 for loss) were detected in both tumor and PDX.

However, in a few cases, resolution of these copy-number

changes was not obtained in tumors, because of low

purity, but was detected in the PDX; for example, KRAS amplifi-

cation in patient 1 (Figure S2C) and CDKN2A/B loss in patients 1

and 7 (Figure 2C).

RNA-Seq Analysis Reveals Tumor-Infiltrating Cell
Populations
Mouse-specific reads were filtered in silico from the xenograft

RNA samples before aligning reads to the human genome. Prin-

cipal-component analysis (PCA) of matched tumor and xeno-

graft gene expression revealed distinct stratification of PDXs

and tumor samples (Figure 3A). Using a supervised analysis

comparing matched tumors and PDXs, there were 298 Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways and

Gene Ontology (GO) annotations that were significantly upregu-

lated in tumor samples (p < 0.001), 28 processes that were signif-

icantly downregulated in tumor samples (p < 0.001), and 14

KEGG pathways that were differentially regulated within tumor

and PDX samples (p < 0.001; Table S3). The top 10 most signif-

icantly upregulated processes in tumor samples consisted of

cellular processes specific to nontumor infiltrating cells, such

as ‘‘leukocyte migration,’’ ‘‘adaptive immune response,’’ and

Figure 2. Copy-Number Alterations Are Concordant in Matched PDXs and Tumors

(A) Correlation matrix displaying the Pearson correlation coefficient (calculated on the basis of the absolute copy-number segment mean across 10 kb

windows). Samples are sorted on the basis of unsupervised hierarchical clustering of the correlation coefficient. Red triangles correspond to matched tumors

and PDXs.

(B). Density plot showing differences in correlation coefficient between case-matched tumors and PDXs (red) versus any other comparison (blue). AWilcoxon test

was performed, comparing the correlation between case-matched PDXs and unmatched or distinct pairs of samples (p = 1.09e-08).

(C) Genes commonly altered at the copy-number level in HNSCC were analyzed with 100 kb windows on either ends of the gene. Red rectangles correspond to

the genomic positions of the indicated gene. Point color corresponds to sample. Copy number is indicated by absolute copy number on the y axis, and only

segments with median copy number > 3 or < 1.5 are indicated by color (according to sample source).

Refer to Figure S2 for further details.

Cell Reports 24, 2167–2178, August 21, 2018 2171



‘‘leukocyte chemotaxis’’ (Figure 3B). Pathways upregulated in

PDXs included those related to keratinization and epidermal

cell differentiation.

Independent of infiltrating cell populations, we predicted that

PDXs would behave most similarly to their matched tumors

compared with unmatched tumors. In order to address this

question, we removed the top 1% of genes contributing to

each principal component from the previous analysis. This

removed the most prevalent genes associated with infiltrating

cell populations in order to better evaluate genes associated

with tumor-intrinsic biology (n = 59,884 genes). Pearson correla-

tion coefficients ranged from 0.47 to 0.97 (median, 0.87)

for case-matched tumors and PDXs (Figure 4A). This was

significantly greater than the correlations drawn between un-

matched combinations of samples (0.29–0.97; median, 0.75;

p = 1.69e-09; Figures 4B and 4C).

PDXs Recapitulate the Molecular Heterogeneity of the
Disease
Previous studies have described diverse molecular subtypes in

HNSCC (Chung et al., 2004;Walter et al., 2013). The four HNSCC

molecular subtypes described by Walter et al. (2013) were

subsequently confirmed in the TCGA dataset—atypical (24%),

basal (31%), classical (18%), and mesenchymal (27%)—on the

basis of genes associated with each signature (Cancer Genome

Figure 3. Differential Expression Analysis Reveals Tumor-Infiltrating
Cell Populations

(A) PCA clustering of PDX (xenome-filtered) and primary tumor RNA samples.

(B) Pathway analysis is summarized by bar charts showing the p value (lighter

hue) and false discovery rate (FDR) q value (darker hue). Pathways are labeled

along the y axis; the number of genes annotated within each pathway is

indicated in parentheses.

Refer to Table S3 for further details.

Figure 4. Correlation across the Transcriptome Is Highest in

Matched Tumors and PDXs

(A) Correlation matrix displaying the Pearson correlation coefficient calculated

across the gene expression of 59,884 genes (FPKM). This included the whole

transcriptome with the exception of the top 1% of genes contributing to the

principal components in Figure 3. Red triangles indicate tiles corresponding to

case-matched tumors and PDXs.

(B) Density plot showing differences in correlation coefficient between case-

matched tumors and PDXs (red) versus any other comparison (blue).

(C) A Wilcoxon test was used to compare the correlation between case-

matched PDXs and unmatched or distinct pairs of samples.
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Atlas Network, 2015). Because of the genomic diversity

observed in our sequenced PDX cohort, we hypothesized that

our repository contained PDXs derived from tumors across these

molecular subtypes. To test this, we built a random forest classi-

fier to categorize our samples on the basis of the expression sig-

natures and previously reported molecular subtypes described

in the cohort of Walter et al. (2013) (Experimental Procedures).

Our classifier, built on 638 genes, successfully categorized

125 of 138 samples in the dataset of Walter et al. (2013), for an

overall accuracy of 90.6% (Table S4). When applied to the

TCGA HNSCC dataset, 243 of 277 samples (87.7%) were

correctly predicted within their previously published molecular

subtype, accurately classifying 62 of 68 atypical, 82 of 85 basal,

40 of 49 classical, and 59 of 75 mesenchymal tumors (Figure 5).

The most common incorrect classification involved identifying

previously reported mesenchymal tumors as basal (15 of 75).

When applied to the 16 OCSCC tumors in our study, 3 were pre-

dicted to be atypical (18.8%), 7 basal (43.8%), 2 classical

(12.5%), and 4 mesenchymal (25%) (Table S4). Recently,

HNSCC single-cell RNA sequencing characterized the ‘‘mesen-

chymal’’ expression signature as driven primarily by stromal

infiltrate (Puram et al., 2017). Two subpopulations of cancer-

associated fibroblasts (CAFs) contributed specific signatures,

and we evaluated whether the CAF gene signature was upregu-

lated in samples subtyped as ‘‘mesenchymal’’ from our classi-

fier. CAF genes (n = 412) were queried across the published

datasets (Walter et al., 2013, and TCGA) and our reported data-

set (WUSM). Samples classified in the mesenchymal subtype

displayed significantly increased relative expression in CAF-

associated genes compared with the atypical (p < 0.05 in all

datasets), basal (p < 0.05 in all datasets), and classical subtypes

(p < 0.01 in the Walter et al., 2013, and TCGA datasets).

PDX Parallels Clinical Response in a Trametinib
‘‘Co-clinical’’ Trial
Advantages of generating PDXs in coordinationwith clinical trials

include the ability to functionally dissect patient treatment re-

sponses, as well as discovering and validating therapeutic

mechanisms. Twenty-nine of the PDXs in this study were from

patients in clinical trials, 10 of which are included in the

sequenced cohort. As a validation of this approach and this

PDX repository, we evaluated the efficacy of trametinib in the

post-treatment PDX generated from patient 2 at the time of sur-

gical resection. This patient had a subjective clinical response

with a downstaging of tumor from a clinical T3N1M0 OCSCC

to pathologically staged T1N0 disease (Uppaluri et al., 2017).

The patient later developed a local recurrence and lung metas-

tasis and ultimately succumbed to this disease. We analyzed

WES and RNA-seq data from untreated and post-trametinib

treated PDX and primary tumor samples and WES from recur-

rence and lung metastasis biopsies.

The treatment-naive tumor biopsy and matched PDX have

been presented in this study alongwith the other primary tumors.

WES detected 123 SNVs and indels in the primary tumor, 92 of

which were detected in its derived xenograft (Figure 6A). The

post-treatment tumor sample had very low purity; only 20 of

Figure 5. Varied HNSCC Molecular Subtypes Successfully Engraft as PDXs
This heatmap contains genes (rows) corresponding to a single gene out of the 638 gene signature defining the four molecular subtypes in HNSCC. Each column

corresponds to a sample within each cohort. Fill color represents the gene median-centered (GMC) value of the respective gene expression within each dataset

(relative expression). Four hundred twelve genes associated with cancer-associated fibroblasts (CAFs) defined by Puram et al. (2017) were summarized by the

median GMC value of the 412 genes in the associated sample (denoted in CAF signature). Datasets shown include the Walter et al. (2013) dataset (used to build

the classifier), the TCGA dataset, and the 16 tumor RNA samples obtained at Washington University School of Medicine reported in this study (WUSM). Values in

‘‘predict’’ indicate the molecular subtype predicted by the random forest classifier described. Values in ‘‘published’’ indicate the molecular subtype documented

for each corresponding sample in the previously published datasets.

Refer to Table S4.

Cell Reports 24, 2167–2178, August 21, 2018 2173



the 123 variants detected in the primary, untreated tumor were

detected at less than 15% VAF (Table S2). However, in the

PDX corresponding to the post-treatment tumor sample, 83 var-

iants (67.5%) from the primary tumor were detected, as well as

14 new variants. A focal amplification of EGFR was observed

in the primary tumor, pre- and post-treatment PDXs, the recur-

rent tumor, and, despite low purity, the metastasis sample

(Figure 6B).

Because there appeared to be a clinical response in the

2 week ‘‘window’’ clinical trial, we askedwhether a longer course

of trametinib would result in clinical benefit using the PDXmodel.

Cohorts of mice engrafted with patient 2’s post-treatment PDX

were treated with an extended course of trametinib or vehicle

(n = 7 each). While the vehicle-treated mice showed

progressive tumor growth, trametinib treatment resulted in

reduction in tumor size over the first 50 days of treatment, fol-

lowed by outgrowth of all tumors (Figure 6C). Thus, this PDX

model displays responses consistent with the clinical findings

in the patient and illustrates that escape tumors can be further

studied to define the basis of response and resistance.

DISCUSSION

The PDX cohort in this study was focused exclusively on OCSCC

patients, capturing clinical, mutational, and gene expression

subtyping of the disease defined by molecular annotation of

25%of the available repository. Future studieswill involve further

genomic and molecular annotation of the remaining repository

(n = 47), with appropriate public accessibility to these data. By

comparing the genomic landscape of our PDX cohort to previous

studies, we show that we have successfully generated diverse

genotypes that span the phenotypic heterogeneity characteristic

of HNSCC. Known recurrently mutated genes (e.g., TP53,

CASP8, CDKN2A) and CNAs of chromosomes 3, 5, and 8 were

recurrently altered in our sequenced cohort and were confirmed

in their matched PDXs. In addition, driver events, including

Figure 6. Patient 2 PDX Parallels Clinical Response in a Trametinib ‘‘Co-clinical’’ Trial

(A) Variant allele frequency (VAF) of the y axis labels (right-hand side) and the x axis labels (across top) are indicated by each point. The upper triangle contains all

variants, either detected in the primary tumor (dark blue) or detected in a subsequent sample (green). The lower triangle contains only variants detected in the

primary tumor. Pearson correlation coefficient is indicated by the red value in the lower right-hand corner of each plot. Density plots along the diagonal indicate

the VAF density in the corresponding sample.

(B) Absolute copy number is plotted along the y axis. Each point corresponds to the segment mean calculated across 10 kb (per sample) windows within the

shown genomic coordinates. The EGFR locus is shown in red.

(C) Tumor growth comparison between vehicle-treated and trametinib-treated P2 xenografts.
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canonical hotspot mutations and amplifications of known onco-

genes (e.g., HRAS, PIK3CA) and inactivation and loss of tumor

suppressor genes, were confirmed in matched PDXs.

Previous studies have concluded that effective xenoengraft-

ment does not correlate with patient age or tumor stage, while

others have described the difficulty in engraftment of tumors

from patients with early-stage disease. We successfully estab-

lished PDXs from five patients with stage I or II disease (8% of

our overall cohort). However, because our focus was on devel-

oping a repository and we studied only successfully engrafted

tumors, we cannot comment on overall correlations of staging

and engraftment success.

In comparing our sequenced cohort with the previously

described molecular subtypes of the disease, our PDXs were

shown to be established from atypical (n = 3), basal (n = 7), clas-

sical (n = 2), and mesenchymal (n = 4) tumors. The molecular

subtype classifier in this study was trained and validated on pre-

viously published tumor expression data and likely includes tu-

mor-infiltrating cell populations and microenvironmental factors

of those tissues. We attempted to apply the classifier to the PDX

RNA samples in addition to the tumor RNA samples, but only

seven PDX samples (44%)were labeledwith the same classifica-

tion as their matched tumor. The random forest classifier labels

samples by assigning a probability that a sample fits into a sub-

type, and these values were more marginal in PDX samples than

in the tumor RNA samples. Discordant labels could also reflect

issues in tumor purity. Future studies are necessary to describe

how these molecular subtype classifications can be applied (or

re-trained) to appropriately stratify large PDX cohorts. Recent

studies using single-cell transcriptomics (scRNA-seq) have

shown that themesenchymal subtype of HNSCC is due primarily

to infiltrating stromal cells, specifically CAFs (Puram et al., 2017).

Without assessing our tumor samples at single-cell resolution,

we cannot definitively attribute the mesenchymal signature in

our classifier to non-tumor cell populations. However, we did

observe significantly increased expression in these genes in

samples classified as ‘‘mesenchymal’’ compared with other

molecular subtypes. Future studies would benefit from addi-

tional scRNA-seq experiments to improve molecular subtyping

of tumor-intrinsic patterns in HNSCC, while accounting for stro-

mal infiltration.

Although our sequenced cohort captures genomic alterations

at the population level, this study also showed how effectively

OCSCC PDXs individually recapitulate their respective tumors.

This establishes the potential utility of our repository to explore

mechanisms of targeted drug sensitivity and resistance for pre-

cision oncology applications. Concordance was described in

terms of the maintenance of mutations and genomic alterations

in PDXs. At the individual level, most xenografts clearly displayed

strong conservation of these alterations with their matched tu-

mors. Previous studies have described selective environmental

pressures in PDXs across tumor types, observing subclonal

outgrowth or the selective engraftment of a subpopulation of

cells. However, in this study comprising PDXs specifically from

the P0 generation, 89.5% of all variants detected in primary

tumors were retained in their matched PDXs.

There were four PDXs that did not retain at least 90% of the

variants detected in their respective tumors. However, two of

these still had relatively high correlation in VAF distribution of

shared variants (R2 = 0.697–0.788), and the other two tumors

had low tumor cellularity, which led to lower correlation coeffi-

cients in paired samples. Technical and biological contributions

to lower correlation include sampling noise in sequencing data,

causing higher variance in the VAF distribution; tumor purity,

reducing the sensitivity for detecting somatic mutations; and

increased mutational burden, indicative of carcinogen-induced

tumors and genomic instability and resulting in increased

subclonal and private mutations. It is possible that a more com-

plex subclonal architecture could be resolved with increased

sequencing depth, single-cell sequencing analysis, or further

passaging to evaluate for subclonal selection. These additional

experiments would account for differential engraftment of tumor

cell subpopulations. Importantly, even in PDX-primary pairs with

low correlation metrics, all mutations in putative driver genes

were retained in the corresponding PDX in 15 cases.

The challenges contributing to low correlationmetrics inmuta-

tional frequency (i.e., tumor purity, increased genomic instability,

and lack of resolution of clonality) apply to copy-number detec-

tion as well. We observed concordance (Pearson correlation

coefficient = 0.47–0.97) in 13 cases and very low correlation

values (0.02–0.05) for 3 samples. Two of these samples, patients

5 and 8, were the most highly mutated and displayed increased

genomic instability. Single-cell resolution approaches may

clarify whether CNAs created a selective advantage for

engraftment.

Many PDX-specific mutations (55.3%) were missed in the

tumor because of low sequencing coverage or were present at

lower than 5% VAF in the xenograft. This indicates that either

there was not enough coverage to identify the variant in the

tumor, or it may have been acquired in a very small number of

cells after engraftment. In addition, we evaluatedWES from three

P2 xenografts derived from one of our P0 xenografts, and only 11

total mutations were detected specifically in P2 xenografts, 5 of

which were present at similar frequencies across the three P2

xenografts, suggesting that they may have been selected within

the P1 generation. Additional studies of a larger cohort of later

passage PDXs is needed to confidently evaluate whether

OCSCC PDXs generally retain the primary tumors’ genomic

landscape through passages. However, our dataset does not

overall exhibit aggressive mutational accumulation in early pas-

sages. In 15 of 16 cases, mutations in the all reported recurrently

mutated genes were maintained. However, in the patient 14

relapse tumor, there were two mutations in FAT1 in the PDX

and a tumor-specific FAT1mutation. It would requiremore tumor

sample or deeper sequencing in order to identify whether this

mutation was present at lower frequencies in the tumor, because

the purity of this tumor was about 25%. Althoughwe see concor-

dance across drivers, this example emphasizes the known fact

that selective pressure in the mice does sometimes fundamen-

tally alter tumor biology, and identifying these underlying differ-

ences is important when using PDXs.

As expected, unsupervised approaches to gene expression

analysis revealed the presence of non-tumor cells in bulk primary

tumor RNA data. Supervised differential expression analysis

directly comparing tumors with PDXs validated this observation,

revealing the upregulation of cellular processes associated with
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non-tumor cells (e.g., leukocyte migration, and adaptive immune

response). Downregulated pathways in tumors, on the other

hand, included cellular processes such as keratinization and

epidermal cell differentiation. This is likely indicative of tumor pu-

rity and non-tumor cell infiltration, because PDXs represent

a purer tumor cell population derived from squamous cell

carcinoma tissue. When genes associated with these cellular

processes were removed, we found that PDXs behaved most

similarly to their matched tumors. This is consistent with other

studies focused on characterizing HNSCC PDXs, using prote-

omics and immunohistochemistry, that show conservation of

oncogenic pathway activation and biomarker expression (Key-

sar et al., 2013; Li et al., 2016).

This study presents the advantages of PDX models as a bio-

logical and translational platform for studying OCSCC. At the

disease level, we see that the known molecular heterogeneity

is captured within the described PDX cohort. More importantly,

however, we validate the use of these models in a patient-

specific context, demonstrating strong concordance between

PDX and primary tumors and conservation of key putative driver

events. We describe a patient (patient 2) who responded to tra-

metinib in a neoadjuvant window clinical trial and show that

treatment of the patient’s PDX with trametinib demonstrates a

significant response closely reflecting the clinical history. For

this reason, we emphasize not only the PCT framework but

also the integration of PDXs into a co-clinical trial approach.

The time frame required to generate PDXs does not make it

feasible to study a PDX during the course of patient diagnosis

and treatment. However, by generating PDXs in conjunction

with patients enrolled in these neoadjuvant trials, we can

compare the course of tumorigenesis with clinical outcomes

and retrospectively studymechanisms of drug response. Our re-

pository contains PDXs derived from tumor samples at various

stages and time points in disease, including 29 from patients

enrolled in clinical trials. Future studies will further demonstrate

utility of our PDX platform as a resource for biomarker discovery,

novel combinations, and targeted therapies, as well as imple-

mentation for mechanistic studies.

EXPERIMENTAL PROCEDURES

Sample Acquisition

The tumor acquisition protocol, clinical trials, and correlative studies were all

approved by the Washington University Human Research Protection Office

and Animal Studies Committee, respectively. After informed consent, samples

were obtained through two methods: (1) OCSCC patients undergoing surgical

biopsy or resection were recruited as part of the Washington University tumor

banking protocol (institutional review board [IRB]: 201102323), or (2) patients

were recruited for neoadjuvant clinical trials with either the MEK inhibitor tra-

metinib (ClinicalTrials.gov: NCT01553851; IRB: 201205124) (Uppaluri et al.,

2017) or pembrolizumab (ClinicalTrials.gov: NCT02296684; IRB: 201412118).

Xenoengraftment Procedures

Tumor biopsies were obtained from patients and maintained in sterile DMEM

containing 10% fetal calf serum (FCS) and 1% amphotericin. Biopsies were

sectioned using razor blades into four separate pieces, one specifically for

xenograft generation. Briefly, fresh tumor was minced into approximately 16

pieces, ranging from 2 to 8 mm3, and transferred on ice to the animal facility.

Six- to 8-week-old NOD-scid ILRgnull (NSG) mice (The Jackson Laboratory)

were anesthetized and shaved, and four small incisions were made, one on

each quadrant of the flank. Tumor pieces were then saturated with Matrigel

(Corning), and four pieces were transferred subcutaneously into each quad-

rant using sterile forceps. See Supplemental Experimental Procedures for

further details on xenoengraftment, mouse maintenance, and treatment.

Sequencing and Data Analysis

Genomic DNA was isolated by the Siteman Cancer Center Tissue Processing

Core using the DNeasy Blood and Tissue Kit (QIAGEN). Library construction

and sequencing were performed as previously described, with a few excep-

tions described in the Supplemental Experimental Procedures (Griffith et al.,

2015a). Total RNAwas isolated by the Siteman Cancer Center Tissue Process-

ing Core using QIAGEN RNeasy kits. Single-indexed RNA sequencing

(RNA-seq) libraries were prepared using the Illumina TruSeq Stranded Total

RNA kit with 500 ng of starting material according to the manufacturer’s rec-

ommendations. Sequencing was performed on either the Illumina HiSeq

2500 V4 1 TB platform (2 3 125 bp reads) or the Illumina HiSeq 4000 platform

(2 3 150 bp reads).

Removing Contaminant Mouse Reads from Xenograft Data

WGS, WES, and RNA-seq reads from xenografts were aligned competitively

against the human reference genome (National Center for Biotechnology Infor-

mation [NCBI] build 38, GRCh38) and the mouse reference genome (Genome

Reference Consortium Mouse Build 38, mm10) using the Xenome (version

1.0.0) software in order to filter mouse reads from human reads (Conway

et al., 2012). Subsequent somatic variant detection was performed on data

excluding the mouse-mapped reads.

Sequence Alignment and Somatic Event Detection

The Genome Modeling System (GMS) was used for all analysis, including the

somatic variant detection and RNA-seq analysis (Griffith et al., 2015b). Briefly,

WGS andWES data were processed through SpeedSeq version 0.1.0 (Chiang

et al., 2015; Faust and Hall, 2014), which aligns reads using BWA-MEM version

0.7.10 (Li, 2013) to the human reference genome (NCBI build 38, GRCh38) and

marks duplicates using SAMBLASTER version 0.1.22 (Faust and Hall, 2014).

RNA reads were aligned to GRCh38 using TopHat version 2.0.8 (Trapnell

et al., 2009). Somatic variants were predicted using several variant callers by

comparing primary tumor or xenograft with matched normal pairs. SNVs and

small indels were detected and annotated using the GMS transcript variant

annotator against Ensembl version 74. See Supplemental Experimental Pro-

cedures for more details. All SNVs and indels were manually reviewed for

removal of false positives according to standard procedures (Barnell et al.,

2018). Somatic CNAs were detected by CopyCat version 0.1 (https://github.

com/chrisamiller/copyCat), and structural variations were predicted using

Manta version 0.29.6 (Chen et al., 2016). Tumor purity was estimated by the

mode of minor allele frequencies in regions of loss of heterozygosity (LOH),

as previously described (Anagnostou et al., 2017). SciClone was used to

assess the clonality of mutations present in copy neutral and non-LOH regions

(Miller et al., 2014).

Gene Expression and Pathway Analysis

Gene expression levels were quantified using Cufflinks version 2.1.1(Trapnell

et al., 2010) and HTSeq-count version 0.5.4p1 (Anders and Huber, 2010). Dif-

ferential expression analysis was performed using the DESeq2 R package

(Love et al., 2014) on gene raw counts generated using HTSeq, and gene

expression pathway analysis was performed using the GAGE R package

(Luo et al., 2009).

Analysis of Published Expression Data and Random Forest

Classification

The microarray probe-level intensity files (containing log2-transformed, nor-

mexp background-corrected, LOESS-normalized values) from Walter et al.

(2013) (GEO: GSE39366; n = 138) were gene median-normalized. Gene

expression data (FPKM [fragments per kilobase of transcript per million map-

ped reads]) from the TCGA HNSCC cohort (n = 277) were log2-transformed

and gene median-normalized (Cancer Genome Atlas Network, 2015). The ran-

domForest R package version 4.6-12 was used to build a classifier using 638

Ensembl gene identifiers previously used to define the fourmolecular subtypes
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of HNSCC and trained on the dataset of Walter et al. (2013) (GEO: GSE39366)

on the basis of their previously reported molecular subtypes. This classifier

was subsequently validated on the TCGA dataset and used to predict gene

expression subtypes in the reported dataset (WUSM; n = 16). The infiltration

of CAFs was interrogated by summarizing the expression of 412 CAF-

associated genes within the three datasets (Walter et al., 2013, TCGA, and

WUSM). For further details, see Supplemental Experimental Procedures.

Statistical Methods

Clinicopathological comparisons were conducted using chi-square tests or

one-way ANOVA as appropriate. All statistics and data visualization were per-

formed in R version 3.3.2. using the ggplot2 R package (version 2.2.1) (Wick-

ham, 2009) and GenVisR version 1.8.0 (Skidmore et al., 2016). Concordance of

expression and CNA was determined using the Pearson correlation, and VAF

distribution between PDXs and matched tumors was summarized using the

coefficient of determination.
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SUPPLEMENTAL FIGURES 

Figure S1. Targeted sequencing methods exhibit lower levels of mouse contamination. Refer to Experimental Procedures. A-B. 
Bar charts displaying either the raw number or proportion of reads classified by Xenome as confidently 'Human' or 'Mouse,' or as 
'Both', 'Neither', or 'Ambiguous' for WGS (n=9), WES (n=16), or RNAseq (n=16) PDX samples. ​C-D. ​Distribution of the raw number 
or proportion of reads in each data type associated with each Xenome class. 

 

 

Figure S2. Somatic landscape across the sequenced PDX cohort. Refer to Figure 1. A. ​This waterfall plot shows recurrently 
mutated genes across the cohort of primary tumors and paired xenografts. The bar chart across the top shows the total number of 
nonsilent mutations identified across each case-matched PDX/tumor. Bars are filled to indicate the number of mutations detected in 
both tumor and PDX ('Common') or only one sample (‘Tumor Only’ or ‘PDX Only’). The waterfall plot indicates the type of mutation 
detected in each gene (y-axis) for each sample (x-axis). Borders around tiles indicate whether the mutation was only detected in either 
the tumor or PDX (‘Tumor Only’ or ‘PDX Only’). The horizontal bar chart on the left indicates the percentage of the cohort 
containing mutations in the indicated gene. ​B.​ Median absolute copy number was calculated across large chromosomal segments, and 
large copy number alterations were called across the genome. Colored tiles indicate the patient-associated samples. Within each row, 
the tumor is on the top and the xenograft is on the bottom. ​C.​ Genes commonly altered at the copy number level in HNSCC were 
analyzed with 100kb windows on either ends of the gene. Red rectangles correspond to the genomic positions of the indicated gene. 
Point color corresponds to sample, and copy neutral samples are indicated. Copy number is indicated by absolute copy number on the 
y-axis, and only segments with median copy number >3 or <1.5 are indicated by color (according to sample source). The horizontal 
dotted line at y=2 indicates copy neutral status. 



 



SUPPLEMENTAL TABLES 

Table S1. Overview of the reported PDX repository. Refer to Table 1. ​*X = xenograft/standard-of-care resection, T =  trametinib 
clinical cohort, P = pembrolizumab clinical trial cohort.  

Cohort* Patient Timepoint Treatment TNM Stage 
Age 
(yrs) Sex 

Days to 
Harvest Sequencing 

T 1 primary untreated T4aN0M0 IVA 74 M 105 WES,RNA 
T 1 posttreatment trametinib NA NA 74 M 65 None 
T 2 primary untreated T3N1M0 III 30 F 132 WGS,WES,RNA 
T 2 posttreatment trametinib T1N0M0 I 30 F 36 WES 
T 3 primary untreated T4aN1M0 IVa 45 M 85 WGS,WES,RNA 
T 3 posttreatment trametinib T4aN0M0 IVA 45 M 101 None 
X 4 relapse post-surgery T4bN2bMx IVB 55 F 111 WGS,WES,RNA 
X 5 primary untreated T4aN1Mx IVA 84 F 88 WGS,WES,RNA 
T 6 primary untreated T4aN2bM0 IV 65 M 117 WGS,WES,RNA 
T 6 posttreatment trametinib T4aN2bM0 IV 65 M 95 None 
X 7 primary untreated T2N1Mx III 56 F 93 WGS,WES,RNA 
X 8 primary untreated T3N2Mx IVA 18 M 90 WGS,WES,RNA 
X 9 primary untreated T2N1MX III 69 M 85 WGS,WES,RNA 
X 10 primary untreated T4aN2Mx IVA 47 M 38 WGS,WES,RNA 
T 11 primary untreated T3N2bM0 IVa 54 M 68 WES,RNA 
T 12 primary untreated T2N2bM0 IVA 78 M 44 WES,RNA 
T 12 posttreatment trametinib T1N1M0 III 78 M 27 None 
T 13 primary untreated T4N2M0 IVA 57 M 115 WES,RNA 
T 14 primary untreated T2N2bM0 IVA 75 M 247 WES,RNA 
T 14 posttreatment trametinib T1N2bM0 IVA 75 M 203 None 
T 14 relapse post-surgery rT4aN0 IVA 75 M 43 WES,RNA 
T 15 primary untreated T4N0M0 IVA 66 M 84 WES,RNA 
T 15 posttreatment trametinib T2N0M0 II 66 M 69 None 
X 16 primary untreated T4N2bM0 IVA 71 M 84 None 
X 17 primary untreated rT4aN0Mx IVA 81 F 44 None 
X 18 relapse post-surgery T4AN1Mx IVA 69 M 137 None 
X 19 primary untreated T4aN2Mx IVA 47 M 78 None 
X 20 primary untreated T4aN1Mx IVA 60 M 83 None 
X 21 primary untreated T4aN2Mx IVA 58 M 57 None 
X 22 primary untreated T3N0Mx III 54 M 38 None 
X 23 primary untreated T4aN2Mx IVA 50 M 59 None 
X 24 primary untreated T4aN0Mx IVA 64 M 81 None 
X 25 primary untreated T4aN0Mx IVA 39 M 165 None 
X 26 primary untreated pT3NxMx III 86 F 106 None 
X 27 primary untreated T1N0Mx I 60 M 217 None 
X 28 primary untreated T3N1Mx III 67 M 68 None 
X 29 primary untreated T2M0Mx III 43 M 111 None 
X 30 primary untreated T3N2Mx IVA 53 M 124 None 
X 31 primary untreated rT4N1M0 IVA 85 M 133 None 
X 32 primary untreated T1N0Mx I 61 M 98 None 
X 33 primary untreated T2N2Mx IVA 51 F 66 None 



X 34 primary untreated T4aN0Mx IVA 55 F 85 None 
X 35 primary untreated T4aNxM0 IVA 80 M 96 None 
X 36 primary untreated T4aNxMx IVA 58 F 76 None 
X 37 primary untreated pT4NxMx IVA 83 F NA None 
X 38 primary untreated T3N0Mx III 54 M NA None 
X 39 primary untreated T2N0 II 49 F 117 None 
X 40 primary untreated T3N2Mx IVA 71 F NA None 
X 41 primary untreated T4aN1Mx IVA 54 M 42 None 
X 42 primary untreated T3N1Mx III 79 F NA None 
X 43 primary untreated T4aN2bM1 IVC 64 F 76 None 
T 44 primary untreated T2N1M0 III 58 M 217 None 
T 45 primary untreated T4aN2CM0 IVa 63 M 281 None 
T 46 posttreatment trametinib T4aN0M0 IVA 63 M 82 None 
T 47 posttreatment trametinib T1N2bM0 III 59 M 65 None 
T 48 posttreatment trametinib T4aN2bM0 IVa 72 M 143 None 
P 49 posttreatment pembrolizumab T4N2C IV 60 M 57 None 
P 50 primary untreated T4N2B IV 87 M 110 None 
P 51 posttreatment pembrolizumab T4N2B IV 87 M 42 None 
P 52 posttreatment pembrolizumab T4N0 IV 72 F 50 None 
P 53 primary untreated T4N0 IV 73 M 98 None 
P 54 posttreatment pembrolizumab T4N1 IV 54 M 47 None 
P 55 posttreatment pembrolizumab T4N1 IV 69 F 44 None 

 
SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Xenoengraftment procedures 
Tumor biopsies were obtained from patients and and maintained in sterile Dulbecco Modified Eagle’s medium containing 10% Fetal 
Calf Serum (FCS) and 1% amphotericin. Biopsies were sectioned using razor blades into four separate pieces for the following 
purposes: (1) formalin fixation for storage and immunohistochemical analysis (2) flash freezing in liquid nitrogen for DNA and RNA 
extraction, (3) slow freezing in FCS containing 10% dimethyl sulfoxide (DMSO) for downstream experiments, and (4) immediate 
transplantation into mice for xenograft generation. 

Within one hour of acquisition, fresh tumor was immediately minced into approximately 16 pieces, ranging in size from 2-8 mm3, and 
transferred on ice to the animal facility. 6-8 week old NOD-scid ILRgnull (NSG) mice (Jackson Laboratory, Bar Harbor, ME) were 
anesthetized, shaved, and four small incisions were made, one on each quadrant of the flank. Tumor pieces were then saturated with 
Matrigel (Corning, Tewksbury, MA), and four pieces were transferred subcutaneously into each quadrant using sterile forceps. 

Mice were maintained on sterile water containing sulfamethoxazole (280 ug/mL) and trimethoprim (56 ug/mL) for one month after 
injection and monitored twice weekly for tumor growth. Successful establishment was defined as progressive tumor growth and 
tumors were harvested at approximately 2 cm3 tumor volume. Xenografts were resected and divided in the same manner as the 
primary tumors and were named the “P0” generation. In some cases, P0 generation tumors were slow-frozen in FCS+10% DMSO and 
thawed for subsequent engraftment of the P1 generation. 

Trametinib treatment of engrafted mice 
Trametinib (Selleckchem, Houston, TX) was dissolved in DMSO (10 mg/mL), and further diluted into sterile water containing 0.5% 
w/v hypromellose (Sigma-Aldrich, St. Louis, MO) and 2% v/v Tween-80 (Sigma-Aldrich, St. Louis, MO) to a concentration of 0.3 
mg/mL ​(Banks et al., 2015)​. Mice bearing successfully engrafted OCSCC tumors were treated with daily oral gavage with either 
trametinib (3 mg/kg), or vehicle alone beginning 7 days after implantation. Tumor dimensions were measured daily. 

Sequencing methods 
Library construction and sequencing were performed as previously described with a few exceptions described below​(Griffith et al., 
2015a)​. Single indexed libraries were constructed according to the manufacturer’s recommendations using the Illumina TruSeq Nano 
Kit (Illumina Inc, San Diego, CA) for whole genome sequencing (WGS) on the Illumina HiSeq X (2x150 bp reads). Genomic DNA 
was fragmented using the Covaris E210 DNA Sonicator (Covaris, WoBurn, MA). Dual indexed whole exome sequencing (WES) 

https://paperpile.com/c/bvG8lh/xbPcx
https://paperpile.com/c/uliMI2/pevVy
https://paperpile.com/c/uliMI2/pevVy


libraries were constructed/pooled according to the manufacturer’s recommendations using one of three kits/approaches: (1) the 
Paired-End Sample Prep Kit (Illumina Inc, San Diego, CA) for sequencing on the HiSeq 2500 (2x125 bp reads) (2) Kapa Auto 
Illumina (Kapa Biosystems, Woburn, MA) for sequencing on the HiSeq 2500 V4 1Tb (2x125 bp reads) and (3) Kapa Auto Illumina 
(Kapa Biosystems, Woburn, MA) for sequencing on the HiSeq 4000 (2x150 bp reads). Samples were pooled and captured using one 
of four capture reagents: (1) NimbleGen SeqCap EZ Human Exome Library v3.0 Kit (Roche NimbleGen, Madison, WI) (2) 
NimbleGen SeqCap EZ Human Exome Library v3.0 Kit spiked with a custom capture Integrated DNA technologies (IDT) reagent 
(Griffith et al., 2015a)​ (3) NimbleGen SeqCap EZ HGSC VCRome Kit (Roche NimbleGen, Madison, WI) and (4) xGen Lockdown 
Exome Panel v1.0 (IDT, Coralville, IA).  

Somatic event detection 
The Genome Modeling System (GMS) was used for all analysis, including the somatic variant detection and RNA-seq analysis 
(Griffith et al., 2015b)​. Single nucleotide variants (SNVs) were detected by taking the union of VarScan2 v2.3.6​(Koboldt et al., 2012)​, 
Strelka v1.0.11​(Saunders et al., 2012)​, Mutect v1.1.4​(Cibulskis et al., 2013)​, and SomaticSniper v1.0.4​(Larson et al., 2012)​, and 
filtered using Samtools r982​(Li et al., 2009)​ ([mpileup -BuDS] filtered by var-filter-snv v1 then false-positive-vcf v1). Small 
insertions and deletions (indels) were detected by GATK Somatic Indel Detector (v5336) ​(McKenna et al., 2010)​, VarScan2, Strelka, 
and Mutect. Variants were annotated by the GMS transcript variant annotator against Ensembl v74 and compared to the database of 
curated mutations (DoCM) ​(Ainscough et al., 2016; Chen et al., 2016)​ and COSMIC mutations ​(Forbes et al., 2011)​. All SNVs and 
indels were manually reviewed for removal of false positives according to standard procedures ​(Barnell et al., 2018)​. 

Analysis of published expression data and random forest classification.  
728 genes were previously used to define four molecular subtypes of HNSCC using this gene expression dataset ​(Walter et al., 2013)​. 
These 728 genes (HGNC symbols) mapped to 797 gene identifiers in the Ensembl v90 database. The union of Ensembl gene 
identifiers was taken across three experiments - Walter et al., the TCGA HNSCC dataset ​(Cancer Genome Atlas Network, 2015)​, and 
this study (hereafter referred to as WUSM) - to produce a final list of 638 Ensembl gene IDs. The microarray probe-level intensity 
files (containing log2-transformed, normexp background-corrected, loess-normalized values) from Walter et al. (GSE39366, n=138) 
were gene median-normalized ​(Walter et al., 2013)​. Gene expression data (FPKM) from the TCGA HNSCC cohort (n=277) was 
log2-transformed and gene median-normalized ​(Cancer Genome Atlas Network, 2015)​. The randomForest R package v.4.6-12 was 
used to build a classifier using the 638 genes and the 138 samples from the Walter et al. dataset (GSE39366) based upon their 
previously reported molecular subtypes . The classifier was defined using 1,001 trees and downsampling to the minimum sample size 
per molecular subtype (n=29). Model performance was validated using the randomForest package by applying the classifier to the 
TCGA dataset and comparing predictions to the previously reported molecular subtypes. Tumor RNA expression (FPKM) reported in 
this study (WUSM; n=16) was log2-transformed and gene median-normalized, and molecular subtypes were predicted by applying the 
classifier to these expression values. 

Genes associated with cancer-associated fibroblasts (CAFs) were used to compare classified mesenchymal tumors with others, based 
upon the transformed/gene median-normalized expression values within each dataset (Walter et al., TCGA, WUSM). Puram et al. 
showed that expression of 449 genes can be used to describe a signature associated with cancer-associated fibroblasts (CAFs) that 
defines the mesenchymal molecular subtype of head and neck cancers ​(Puram et al., 2017)​. These 449 genes mapped to 412 Ensembl 
gene identifiers assessed in the Walter et al., TCGA, and WUSM datasets. The 412 genes associated with CAF expression signatures 
were gene-median centered (GMC) with respect to each dataset, and then these 412 genes were summarized per sample by the median 
GMC value (denoted as ‘CAF signature’ in Figure 5). 
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