1,762 research outputs found

    Transit Timing Observations from Kepler: VII. Confirmation of 27 planets in 13 multiplanet systems via Transit Timing Variations and orbital stability

    Full text link
    We confirm 27 planets in 13 planetary systems by showing the existence of statistically significant anti-correlated transit timing variations (TTVs), which demonstrates that the planet candidates are in the same system, and long-term dynamical stability, which places limits on the masses of the candidates---showing that they are planetary. %This overall method of planet confirmation was first applied to \kepler systems 23 through 32. All of these newly confirmed planetary systems have orbital periods that place them near first-order mean motion resonances (MMRs), including 6 systems near the 2:1 MMR, 5 near 3:2, and one each near 4:3, 5:4, and 6:5. In addition, several unconfirmed planet candidates exist in some systems (that cannot be confirmed with this method at this time). A few of these candidates would also be near first order MMRs with either the confirmed planets or with other candidates. One system of particular interest, Kepler-56 (KOI-1241), is a pair of planets orbiting a 12th magnitude, giant star with radius over three times that of the Sun and effective temperature of 4900 K---among the largest stars known to host a transiting exoplanetary system.Comment: 12 pages, 13 figures, 5 tables. Submitted to MNRA

    Planet formation in highly inclined binaries

    Full text link
    We explore planet formation in binary systems around the central star where the protoplanetary disk plane is highly inclined with respect to the companion star orbit. This might be the most frequent scenario for binary separations larger than 40 AU, according to Hale (1994). We focus on planetesimal accretion and compute average impact velocities in the habitable region and up to 6 AU from the primary.Comment: Accepted for publication on A&

    Habitable Planet Formation in Binary-Planetary Systems

    Get PDF
    Recent radial velocity observations have indicated that Jovian-type planets can exist in moderately close binary star systems. Numerical simulations of the dynamical stability of terrestrial-class planets in such environments have shown that, in addition to their giant planets, these systems can also harbor Earth-like objects. In this paper, we study the late stage of terrestrial planet formation in such binary-planetary systems, and present the results of the simulations of the formation of Earth-like bodies in their habitable zones. We consider a circumprimary disk of Moon- to Mars-sized objects and numerically integrate the orbits of these bodies at the presence of the Jovian-type planet of the system and for different values of the mass, semimajor axis, and orbital eccentricity of the secondary star. Results indicate that, Earth-like objects, with substantial amounts of water, can form in the habitable zone of the primary star. Simulations also indicate that, by transferring angular momentum from the secondary star to protoplanetary objects, the giant planet of the system plays a key role in the radial mixing of these bodies and the water contents of the final terrestrial planets. We will discuss the results of our simulation and show that the formation of habitable planets in binary-planetary systems is more probable in binaries with moderate to large perihelia.Comment: 27 pages, 11 figures, submitted for publicatio

    Tidal Truncation of Circumplanetary Discs

    Full text link
    We analyse some properties of circumplanetary discs. Flow through such discs may provide most of the mass to gas giant planets, and such discs are likely sites for the formation of regular satellites. We model these discs as accretion discs subject to the tidal forces of the central star. The tidal torques from the star remove the disc angular momentum near the disc outer edge and permit the accreting disc gas to lose angular momentum at the rate appropriate for steady accretion. Circumplanetary discs are truncated near the radius where periodic ballistic orbits cross, where tidal forces on the disc are strong. This radius occurs at approximately 0.4 r_H for the planet Hill radius r_H. During the T Tauri stage of disc accretion, the disc is fairly thick with aspect ratio H/r > 0.2 and the disc edge tapering occurs over a radial scale ~ H ~ 0.1 r_H. For a circular or slightly eccentric orbit planet, no significant resonances lie within the main body of the disc. Tidally driven waves involving resonances nonetheless play an important role in truncating the disc, especially when it is fairly thick. We model the disc structure using one dimensional time-dependent and steady-state models and also two dimensional SPH simulations. The circumplanetary disc structure depends on the variation of the disc turbulent viscosity with radius and is insensitive to the angular distribution of the accreting gas. Dead zones may occur within the circumplanetary disc and result in density structures. If the disc is turbulent throughout, the predicted disc structure near the location of the regular Jovian and Saturnian satellites is smooth with no obvious feature that would favor formation at their current locations.Comment: Accepted for publication in MNRA

    KIC 4247791: A SB4 system with two eclipsing binaries (2EBs)

    Full text link
    KIC 4247791 is an eclipsing binary observed by the Kepler satellite mission. We wish to determine the nature of its components and in particular the origin of a shallow dip in its Kepler light curve that previous investigations have been unable to explain in a unique way. We analyze newly obtained high-resolution spectra of the star using synthetic spectra based on atmosphere models, derive the radial velocities of the stellar components from cross-correlation with a synthetic template, and calculate the orbital solution. We use the JKTEBOP program to model the Kepler light curve of KIC 4247791. We find KIC 4247791 to be a SB4 star. The radial velocity variations of its four components can be explained by two separate eclipsing binaries. In contradiction to previous photometric findings, we show that the observed composite spectrum as well as the derived masses of all four of its components correspond to spectral type F. The observed small dip in the light curve is not caused by a transit-like phenomenon but by the eclipses of the second binary system. We find evidence that KIC 4247791 might belong to the very rare hierarchical SB4 systems with two eclipsing binaries.Comment: 6 pages, 8 figures, 2 table

    Resonant inclination excitation of migrating giant planets

    Full text link
    The observed orbits of extrasolar planets suggest that many giant planets migrate a considerable distance towards their parent star as a result of interactions with the protoplanetary disk, and that some of these planets become trapped in eccentricity-exciting mean motion resonances with one another during this migration. Using three-dimensional numerical simulations, we find that as long as the timescale for damping of the planets' eccentricities by the disk is close to or longer than the disk-induced migration timescale, and the outer planet is more than half the mass of the inner, resonant inclination excitation will also occur. Neither the addition of a (simple, fixed) disk potential, nor the introduction of a massive inner planetary system, inhibit entry into the inclination resonance. Therefore, such a mechanism may not be uncommon in the early evolution of a planetary system, and a significant fraction of exoplanetary systems may turn out to be non-coplanar.Comment: to appear in ApJ 597, November 1, 200

    The Dynamical Origin of the Multi-Planetary System HD45364

    Full text link
    The recently discovered planetary system HD45364 which consists of a Jupiter and Saturn mass planet is very likely in a 3:2 mean motion resonance. The standard scenario to form planetary commensurabilities is convergent migration of two planets embedded in a protoplanetary disc. When the planets are initially separated by a period ratio larger than two, convergent migration will most likely lead to a very stable 2:1 resonance for moderate migration rates. To avoid this fate, formation of the planets close enough to prevent this resonance may be proposed. However, such a simultaneous formation of the planets within a small annulus, seems to be very unlikely. Rapid type III migration of the outer planet crossing the 2:1 resonance is one possible way around this problem. In this paper, we investigate this idea in detail. We present an estimate for the required convergent migration rate and confirm this with N-body and hydrodynamical simulations. If the dynamical history of the planetary system had a phase of rapid inward migration that forms a resonant configuration, we predict that the orbital parameters of the two planets are always very similar and hence should show evidence of that. We use the orbital parameters from our simulation to calculate a radial velocity curve and compare it to observations. Our model can explain the observational data as good as the previously reported fit. The eccentricities of both planets are considerably smaller and the libration pattern is different. Within a few years, it will be possible to observe the planet-planet interaction directly and thus distinguish between these different dynamical states.Comment: 9 pages, 9 figures - accepted for publication in Astronomy and Astrophysic
    • …
    corecore