644 research outputs found

    Rapport de la campagne PROPPAC 04 à bord du N.O. Le Suroît (30 octobre au 26 novembre 1989)

    Get PDF
    La campagne PROPPAC 4, dont l'ORSTOM était maître d'oeuvre, s'est déroulée du 30 octobre au 26 novembre 1989 entre 20°S (nord de la Nouvelle-Calédonie) et 5°S le long de 165°E. L'objectif était de décrire en deux points fixes de 8 jours la variabilité à court terme des paramètres hydrologiques et planctoniques, leur répartition le long de la colonne d'eau, la distribution des différentes classes d'organismes et de mesurer l'intensité des flux : advection et mélanges, taux de sédimentation, production primaire et secondaire. Ces informations, recueillies dans deux situations oligotrophes considérées comme typiques, doivent permettre de compléter les données rudimentaires de biologie qui sont collectées au cours des stations de courte durée des radiales bi-annuelles SURTROPAC depuis 1984 et servir à la définition de la relation production-hydrologie dans le Pacifique occidental. La première station de 8 jours, dont la position a été choisie à l'issue d'une radiale préliminaire, était située à 7-8°S et caractérisée par une pycnocline profonde (75 m) et marquée, avec un maximum de chlorophylle vers 80-100 m. La seconde, située à 16°S, correspondrait à une structure hydrologique avec un faible gradient et des sels nutritifs vers 140 m, le maximum de chlorophylle se situant à 120-140 m. (Résumé d'auteur

    GOODS-HerschelHerschel: identification of the individual galaxies responsible for the 80-290μ\mum cosmic infrared background

    Get PDF
    We propose a new method of pushing HerschelHerschel to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24μ\mum colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected HerschelHerschel sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250μ\mum and more than 3 in the 350μ\mum and 500μ\mum bands. We produce realistic mock HerschelHerschel images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-HerschelHerschel Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a "local confusion noise". Two methods are used to identify sources with reliable photometric accuracy extracted using 24μ\mum prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24μ\mum neighbours and the photometric accuracy index (PAI) directly extracted from the mock HerschelHerschel images. After correction for completeness, thanks to our mock HerschelHerschel images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100μ\mum and 2.2 mJy at 160μ\mum and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250μ\mum, 350μ\mum, and 500μ\mum, respectively. The latter depths improve the detection limits of HerschelHerschel by factors of 5 at 250μ\mum, and 3 at 350μ\mum and 500μ\mum as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all HerschelHerschel bands appear to be distant siblings of the Milky Way (zz\sim0.96 for λ\lambda<<300μ\mum) with a stellar mass of MM_{\star}\sim9×\times1010^{10}M_{\odot}.Comment: 22 pages, 16 figures. Accepted for publication by Astronomy and Astrophysic

    Estimation of absorption line indices of early-type galaxies using colours

    Full text link
    Context. Absorption line indices are widely used to determine the stellar population parameters such as age and metallicity of galaxies, but it is not easy to obtain the line indices of some distant galaxies that have colours available. Aims. This paper investigates the correlations between absorption line indices and colours. Methods. A few statistical fitting methods are mainly used, via both the observational data of Sloan Digital Sky Survey and a widely used theoretical stellar population model. Results. Some correlations between widely used absorption line indices and ugriz colours are found from both observational data of early-type galaxies and a theoretical simple stellar population model. In particular, good correlations between colours and widely used absorption line indices such as Dn(4000), HgammaA, HgammaF, HdeltaA, Mg1, Mg2, and Mgb, are shown in this paper. Conclusions. Some important absorption line indices of early-type galaxies can be estimated from their colours using correlations between absorption line indices and colours. For example, age-sensitive absorption line indices can be estimated from (u-r) or (g-r) colours and metallicity-sensitive ones from (u - z) or (g - z). This is useful for studying the stellar populations of distant galaxies, especially for statistical investigations.Comment: 9 pages, 21 figures, will be shown in A&

    An Empirical Process Central Limit Theorem for Multidimensional Dependent Data

    Full text link
    Let (Un(t))tRd(U_n(t))_{t\in\R^d} be the empirical process associated to an Rd\R^d-valued stationary process (Xi)i0(X_i)_{i\ge 0}. We give general conditions, which only involve processes (f(Xi))i0(f(X_i))_{i\ge 0} for a restricted class of functions ff, under which weak convergence of (Un(t))tRd(U_n(t))_{t\in\R^d} can be proved. This is particularly useful when dealing with data arising from dynamical systems or functional of Markov chains. This result improves those of [DDV09] and [DD11], where the technique was first introduced, and provides new applications.Comment: to appear in Journal of Theoretical Probabilit

    CoRoT light curves of RR Lyrae stars. CoRoT 101128793: long-term changes in the Blazhko effect and excitation of additional modes

    Full text link
    The CoRoT (Convection, Rotation and planetary Transits) space mission provides a valuable opportunity to monitor stars with uninterrupted time sampling for up to 150 days at a time. The study of RR Lyrae stars, performed in the framework of the Additional Programmes belonging to the exoplanetary field, will particularly benefit from such dense, long-duration monitoring. The Blazhko effect in RR Lyrae stars is a long-standing, unsolved problem of stellar astrophysics. We used the CoRoT data of the new RR Lyrae variable CoRoT 101128793 (f0=2.119 c/d, P=0.4719296 d) to provide us with more detailed observational facts to understand the physical process behind the phenomenon. The CoRoT data were corrected for one jump and the long-term drift. We applied different period-finding techniques to the corrected timeseries to investigate amplitude and phase modulation. We detected 79 frequencies in the light curve of CoRoT 101128793. They have been identified as the main frequency f0, and its harmonics, two independent terms, the terms related to the Blazhko frequency, and several combination terms. A Blazhko frequency fB=0.056 c/d and a triplet structure around the fundamental radial mode and harmonics were detected, as well as a long-term variability of the Blazhko modulation. Indeed, the amplitude of the main oscillation is decreasing along the CoRoT survey. The Blazhko modulation is one of the smallest observed in RR Lyrae stars. Moreover, the additional modes f1=3.630 and f2=3.159 c/d are detected. Taking its ratio with the fundamental radial mode into account, the term f1 could be the identified as the second radial overtone. Detecting of these modes in horizontal branch stars is a new result obtained by CoRoT.Comment: 13 pages, 2 figures, 2 long tables. Accepted for publication in A&

    The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors

    Get PDF
    Background: A deep understanding of what causes the phenotypic variation arising from biological patterning processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the pattern, for example the degree to which certain macroscopic structures are present. There is today no general procedure for how to relate a set of patterns and their characteristic features to the functional relationships, parameter values and initial values of an original pattern-generating model. Here we present a new, generic approach for explorative analysis of complex patterning models which focuses on the essential pattern features and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch lateral inhibition over a two-dimensional lattice. Results: By combining computer simulations according to a succession of statistical experimental designs, computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling, we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the parameter values of the original model, for example by predicting the parameter values leading to particular patterns, and provides insights that would have been hard to obtain by traditional methods. Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values and initial values of an underlying pattern-generating mathematical model

    A Bayesian approach to wavelet-based modelling of discontinuous functions applied to inverse problems

    Get PDF
    Inverse problems are examples of regression with more unknowns than the amount of information in the data and hence constraints are imposed through prior information. The proposed method defines the underlying function as a wavelet approximation which is related to the data through a convolution. The wavelets provide a sparse and multi-resolution solution which can capture local behaviour in an adaptive way. Varied prior models are considered along with level-specific prior parameter estimation. Archaeological stratigraphy data are considered where vertical earth cores are analysed producing clear piecewise constant function estimates

    The Cosmic Far-Infrared Background Buildup Since Redshift 2 at 70 and 160 microns in the COSMOS and GOODS fields

    Get PDF
    The Cosmic Far-Infrared Background (CIB) at wavelengths around 160 {\mu}m corresponds to the peak intensity of the whole Extragalactic Background Light, which is being measured with increasing accuracy. However, the build up of the CIB emission as a function of redshift, is still not well known. Our goal is to measure the CIB history at 70 {\mu}m and 160 {\mu}m at different redshifts, and provide constraints for infrared galaxy evolution models. We use complete deep Spitzer 24 {\mu}m catalogs down to about 80 {\mu}Jy, with spectroscopic and photometric redshifts identifications, from the GOODS and COSMOS deep infrared surveys covering 2 square degrees total. After cleaning the Spitzer/MIPS 70 {\mu}m and 160 {\mu}m maps from detected sources, we stacked the far-IR images at the positions of the 24 {\mu}m sources in different redshift bins. We measured the contribution of each stacked source to the total 70 and 160 {\mu}m light, and compare with model predictions and recent far-IR measurements made with Herschel/PACS on smaller fields. We have detected components of the 70 and 160 {\mu}m backgrounds in different redshift bins up to z ~ 2. The contribution to the CIB is maximum at 0.3 <= z <= 0.9 at 160{\mu}m (and z <= 0.5 at 70 {\mu}m). A total of 81% (74%) of the 70 (160) {\mu}m background was emitted at z < 1. We estimate that the AGN relative contribution to the far-IR CIB is less than about 10% at z < 1.5. We provide a comprehensive view of the CIB buildup at 24, 70, 100, 160 {\mu}m. IR galaxy models predicting a major contribution to the CIB at z < 1 are in agreement with our measurements, while our results discard other models that predict a peak of the background at higher redshifts. Our results are available online http://www.ias.u-psud.fr/irgalaxies/ .Comment: Accepted in Astronomy & Astrophysic
    corecore