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A Bayesian approach to wavelet-based modelling of

discontinuous functions applied to inverse problems

Robert G. Aykroyd1∗ and Hassan Aljohani2†

1University of Leeds, UK and 2Taif University, Saudi Arabia

Abstract

Inverse problems are examples of regression with more unknowns than the

amount of information in the data and hence constraints are imposed through prior

information. The proposed method defines the underlying function as a wavelet

approximation which is related to the data through a convolution. The wavelets

provide a sparse and multi-resolution solution which can capture local behaviour in

an adaptive way. Varied prior models are considered along with level-specific prior

parameter estimation. Archaeological stratigraphy data are considered where verti-

cal earth cores are analysed producing clear piecewise constant function estimates.

Keywords: Archaeological stratigraphy, Elastic-net, Haar wavelet, Hierarchical

models, Laplace distribution, Markov chain Monte Carlo, Sparsity.

1 Introduction

Many scientific investigations involve recording measurements which are only indirectly

related to the quantity of interest. In some cases these will involve only a simple linear

relationship leading to a calibration problem, but in more complicated cases this can be

a convolution which necessitates a more challenging analysis. Because of the nature of

many such inverse problems, deconvolution can introduce extra numerical issues and hence

require a more thoughtful approach. Although a particular application is investigated

here, the methodology provides a general framework for many other inverse problems in

the applied sciences — a general introduction to inverse problems can be found in Ribés

and Schmitt (2008) with a mathematical review in Stuart (2010).

The application of inverse estimation methods to be considered here is the analysis of

core magnetic readings in geophysics and in particular archaeology — though it is very

similar to applications in oil exploration. To investigate the earth’s subsurface narrow
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†This work was carried out while at the University of Leeds, Leeds, UK.

1



cores are extracted and examined. In some cases analysis may only involve observation

of colour, for example volcanic ash or charcoal from fires, but in other cases there is no

visible evidence. In some cases there may be evidence based on magnetic properties, and

a magnetometer passed along the core might reveal changes. The key quantity is then the

magnetic susceptibility which measures the degree of magnetization of a material when

placed in a magnetic field — a discussion of magnetic properties of material can be found

in, for example, Le Borgne (1960). Figure 1 shows a diagram of a core with various

key dimensions marked along with typical parameter values – these are values used in

Aykroyd and Al-Gezeri (2014) in simulations to mimic real data. When the core is passed

through the magnetic detector, data recording starts before the core enters the equipment

and continues until after it is completely removed from the other side, hence the distances

d1 and d5 correspond to an empty detector with susceptibility zero. As the core enters

the detector the topsoil from the site is recorded with susceptibility xB which represents

a background susceptibility for a distance d2. As the core passes through, the second part

of the core, of length d3 represents the archaeological feature, with susceptibility profile

xF . There is a second background part which is of length d4 and again has susceptibility

xB. Finally, d5 represents the last distance after the core has emerged, and has zero

susceptibility before the data recording stops. Hence the first three cores have small

extent whilst the fourth and fifth cores have large extent.

Core

I II III IV V

D
is
ta
n
ce
s

d1 80 80 80 80 80

d2 30 30 30 30 30

d3 70 70 80 160 150

d4 140 140 130 50 60

d5 80 80 80 80 80

xF 1.1 1.5 1.8 1.1 1.0

xB 0.2 0.2 0.2 0.2 0.2

Figure 1: Diagram of an extracted core and corresponding susceptibility profile along with

typical parameter values derived from a real archaeological site.

In archaeology the equipment can be used to take measurements at fine resolution

along such cores, but this means that nearby readings are necessarily highly correlated.

To remove, or at least reduce, these effects a deconvolution step is needed, but in the

presence of substantial noise simple approaches would not yield reliable results. The first

methods to be applied were the, Fourier transform based, Wiener Filter and singular
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value decomposition algorithms (see, for example, Press and Flannery, 1992), but the

algorithms can be unstable, with smooth reconstructions and “Gibbs ringing” artifacts

(Bracewell, 1986; Champeney, 1987). Statistical approaches to deconvolution problems

began in the early 1980s (see the review paper by Besag, 1989, and references therein).

Such approaches involved modelling local variability, in terms of first differences, using

Gaussian and Laplace distributions which also introduce local smoothing. This works well

for smoothly varying continuous functions but it is not helpful here as the scientist wishes

to divide the core into distinct segments representing separate archaeological periods. In

these situations the ideal answer would be a combination of constant values, represent-

ing stable conditions, with jumps which mark abrupt changes. Wavelet methods are

often used elsewhere to describe functions which are smooth in parts but with significant

discontinuities. The theme of this paper, therefore, is the use of wavelet methods for

inverse problems where the aim is to produce piecewise constant output from noisy data

produced through a convolution.

The paper is organised as follows: Section 2 gives background to wavelets and inverse

problems, and defines notation to be used later. Section 3 describes the problem to be

solved. Section 4 described the model within a Bayesian framework, with implementation

issues discussed in Section 5. The analysis of real archaeological stratigraphy data is

shown in Section 6, with overall conclusions in Section 7.

2 Background to wavelets and inverse problems

This section contains some of the basic ideas of wavelets and inverse problems with the

reader directed to the following references for more information. In later sections, however,

further details will be included if needed. For wavelets see for example Daubechies (1988);

Donoho and Johnstone (1994); Nason (2008) and for inverse problems see for example

Ribés and Schmitt (2008); Stuart (2010); Aykroyd (2015) with some related applications in

Aykroyd et al. (2001); Aykroyd and Al-Gezeri (2014), and some work combining wavelets

and inverse problems in Donoho (1995) and Abramovich and Silverman (1998).

Consider the problem where f = {fi : i = 1, . . . , n} is a vector of values of some

unknown function at a set of n equally-spaced locations, and that y = {yi : i = 1, . . . , n}
are observed data values recorded at the same locations. Further, it is assumed that y

and f are related by

y = f + ǫ,

where ǫ is a vector of random variables such that ǫ ∼ N(0, σ2In). The aim is to find an

estimate of f given the data y.

Wavelets are a common choice for this type of non-parametric regression problem when
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noise removal or a multi-resolution analysis is required. Let W be an orthogonal matrix

holding an appropriate discrete wavelet basis, such as the Haar wavelet, as used here, or

one from the general Daubechies families (Daubechies, 1988). The wavelet decomposition

of the data y can be written as

dy = Wy = W (f + ǫ) = W f +Wǫ = df + η

where dy and df are vectors of the wavelet coefficients of y and f respectively. Also, by

the orthogonality of W it can be seen that the errors η ∼ N(0, σ2In). This shows that

noise in the measurements results in corresponding noise in the wavelet coefficients.

It is a common approach to say that fine level coefficients are the result of noise with

the signal being represented in a small number of low-level coefficient values. The method

of wavelet thresholding can then be used to set the small coefficients to zero, or shrinkage

to move the coefficient values closer to zero. A set of modified coefficient values d∗
y after

thresholding or shrinkage can be used as an estimate of the wavelet coefficients of f , that

is d̂f = d∗
y, with resulting estimate of f defined as

f̂ = W Td∗
y.

This denoising method can also be given an interpretation in a Bayesian setting which is

the approach followed later.

The overall aim in a general linear inverse problem is also to estimate an unknown

function, f , from a finite set of measurements, y, but these quantities are related through

some convolution equation such as

y = H f + ǫ

where H is a given matrix and ǫ is some error vector. Following a regression approach an

estimate of f might be found using the usual least-squares estimate

f̂LS = (HTH)−1HTy.

If, however, H is not of full rank, then the inversion cannot to completed. In fact, this

is a characteristic of all ill-posed inverse problems where the Hadamard conditions state

that a problem is well-posed if: a solution exists, the solution is unique and the solution

changes continuously with the data

3 Data modelling

In archaeology is it now required to investigate a potential site using geophysical remote

sensing methods before any physical excavation is started. One possible technique is
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archaeological stratigraphy, where a narrow soil core is removed and examined for possible

human activity. A core sample is obtained using a soil borer and although the strata in the

core often show no variation in colour or texture, an analysis of the magnetic susceptibility

can differentiate between the separate layers. Once collected, the core is passed through

a detector coil, allowing readings of the susceptibility to be made along the length of the

sample. The datasets, which will be analysed later, are shown in Figure 2 and, although

the approximate positions of high activity regions can be identified, it would not be

possible to clearly identify distinct segments.

(a)

−50

0

50

100

150

200

−0.001 0.002 0.004

Measured susceptibility (SI x10^−3)

D
is

ta
nc

e 
al

on
g 

co
re

 (m
m

)

(b)

−50

0

50

100

150

200

−0.001 0.002 0.004

Measured susceptibility (SI x10^−3)

D
is

ta
nc

e 
al

on
g 

co
re

 (m
m

)
(c)

−50

0

50

100

150

200

−0.001 0.002 0.004

Measured susceptibility (SI x10^−3)

D
is

ta
nc

e 
al

on
g 

co
re

 (m
m

)

Figure 2: Measured magnetic data: (a) pyre core I, (b) pyre core II and (b) pyre core III.

Let the output readings be denoted y = {yi : i = 1, . . . , n} which are recorded at

equally-spaced points along the core length. For estimation consider the core partitioned

into elements along its length, with susceptibilities denoted by f = {fi : i = 1, . . . , n}.
Since the detector coil is sensitive to the susceptibility across an extended section of the

sample, the reading indicates not the value at a sharply defined point, but a weighted

average of the values over an extended range, hence

y = Hf + ǫ

where the appropriate form of the spread, or transfer, function, H, is given in (Allum

et al., 1999). The form of the above equation makes this a linear inverse problem.

In practice, the observed measurements are subject to error from various sources. It

has been verified in calibration experiments (Allum et al., 1999) that a Gaussian error

model, with zero mean and constant variance, accounts satisfactorily for the apparent

errors. Further it is possible to use similar calibration experiments to get a good estimate

of the noise variance if needed. Hence assuming an additive Gaussian error model the

5



conditional distribution of the data given the truth is

y|f ∼ N(Hf , σ2In)

with likelihood

π(y|f) = 1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑

i=1

(yi − [Hf ]i)
2

}
, y, f ∈ R

n; σ2 > 0,

where [Hf ]i denotes the ith element of the vector obtain after the product Hf is calcu-

lated. It is not possible to reliably estimate f using the likelihood alone and so previous

approaches have used Bayesian modelling with smoothing prior distributions directly on

the unknown function. For example, a Gaussian process defined by, improper, density

π(f) ∝ exp

{
− 1

2τ 2

n−1∑

i=1

(fi+1 − fi)
2

}
, τ 2 > 0.

For application in archaeological stratigraphy see, for example, Allum et al. (1999). By

its very nature, this type of prior description leads to smooth reconstructions which are

in contradiction of the original aim to produce an estimate which retains the piecewise

constant appearance required. Even carefully designed prior models only partially achieve

this aim and hence an alternative approach, such as wavelet methods, is needed.

4 Bayesian modelling

4.1 General

The key ingredients in the Bayesian approach are the likelihood function and prior distri-

bution, and hence the resulting posterior distribution. The likelihood is the conditional

distribution of the data given the unknowns, denoted as π(y|θ) where θ is a vector of

model parameters. The prior distribution, denoted π(θ), quantifies detailed expert knowl-

edge or general beliefs about the unknowns–the choice of the exact form of this distribution

is more subjective than is the choice of likelihood.

For estimation, evidence from the data and from prior beliefs are brought together

by combining the likelihood and prior distribution, using Bayes’s Theorem, to form the

posterior distribution, defined as

π(θ|y) = π(y|θ)π(θ)
π(y)

where π(y) is a normalizing constant. Note that since this usually involves a high di-

mensional integral it will be unacceptably time-consuming to perform the calculation.

6



Fortunately, the normalising constant contains no information about the unknowns and

hence can be dropped, giving the key statement

π(θ|y) ∝ π(y|θ)π(θ),

– that is “posterior” is proportional to “likelihood” times “prior”. This distribution

incorporates evidence from the data and knowledge from the prior distribution allowing

an estimation process which balances the two types of information.

When there are multiple groups of parameters and prior parameters they will be

assumed independent and modelled separately. Hence, if θ is made-up of two sub-sets,

say, with θ = (θ1,θ2), then the above equation simply becomes

π(θ|y) ∝ π(y|θ)π(θ1)π(θ2)

with other definitions and results following in an obvious fashion.

In the Bayesian setting, the posterior distribution is the basis for estimation and hence

a point estimate can be found, for example, using the maximum a posteriori (MAP) es-

timate, the posterior median, or, as here, the posterior mean. In addition, the joint

posterior distribution can be examined, for example, to construct marginal posterior dis-

tributions, or to calculate Bayesian credible intervals–some examples will be shown as

part of the data analysis in Section 6.

4.2 Likelihood using wavelet coefficients

In stating the aim to express the unknown function, f = {fi : i = 1, . . . , n}, in terms

of wavelets, the estimation problem has changed to the need to estimate the wavelet

coefficients, df , of f . Recalling that given df and W , then f can easily be recreated as

f = W Tdf

and hence the corresponding form of the likelihood is

π(y|df ) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

(
yi − [H W Tdf ]i

)2
}
, y,df ∈ R

n; σ2 > 0

where
[
H W Tdf

]
i
denotes the ith element of the vector obtain after the product H W Tdf

is calculated. It is common to estimate the noise variance, σ2, based on the finest level

wavelet coefficients of the data (see, for example, Nason, 2010) as they are likely to only

contain noise – this is the approach used in Section 6.
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4.3 A single prior model for wavelet coefficients

Now attention falls on appropriate choices for the prior distributions, π(df ), on the wavelet

coefficients, df , or on a subset of the coefficients. An obvious choice is the Gaussian

distribution with density

π(df |κ) =
(κ
π

)n/2

exp

{
−κ

J∑

j=0

d2j

}
, df ∈ R

n; κ > 0

where J = log2(n). Gaussian distributions have been found lacking as priors for wavelet

coefficients across a wide range of problems (Johnstone and Silverman, 2005). Further

discussion of prior distributions choice can be found in Berger and Pericchi (2001). For

sparsity, however, the Laplace distribution might be a better choice with density function

π(df |κ) =
(κ
2

)n

exp

{
−κ

J∑

j=0

|dj|
}
, df ∈ R

n; κ > 0.

As a compromise between these two, a density based on the elastic-net function (Hastie

et al., 2009) might be suitable. The corresponding density function can be shown to be

given by

π(df |κ, γ) =
1

(Z(κ, γ))n
exp

{
−κ( γ

J∑

j=0

d2j + (1− γ)
J∑

j=0

|dj|
}
,

df ∈ R
n;κ > 0, 0 ≤ γ ≤ 1,

where the normalizing constant, derived in the Appendix, is given by

Z(κ, γ) =





2/κ γ = 0,

2
√
π

√
κγ

exp

(
κ(1−γ)2

4γ

)(
1− Φ

(
κ(1−γ)
√
2κγ

))
, 0 < γ < 1,

√
π/κ γ = 1.

Clearly, for the limit values of γ, this reduces to the Gaussian case (γ = 1) and the Laplace

case (γ = 0).

Note that each of these distributions has introduced additional parameters, κ and γ,

which will also be modelled. given that γ can only take values within the range [0, 1], the

beta distribution is a sensible choice of prior model, γ ∼ Beta(a, b), with density

π(γ) =
Γ(a+ b)

Γ(a)Γ(b)
γa−1(1− γ)b−1, 0 ≤ γ ≤ 1; a, b > 0.

The parameters, a and b, can be fixed based on knowledge or information from separate

calibration experiments. In particular, an expert might provide a mean and variance

leading to corresponding values for a and b. Here, however, values a = b = 1 have
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been used which correspond to a uniform prior recognising that there is no true prior

preference. Finally, to favour large values of κ and hence promote sparsity and shrinkage

in the wavelet coefficients, the following distribution with, improper, density is used

π(κ) ∝ exp

(
− c2/κ

)
, κ > 0; c > 0.

Although, there may be external information, it is more likely that the value of the hyper-

parameter would be fixed after initial experiments, and here c = 1000 has been used.

Before moving on, at the start of this section it was mentioned that the prior on the

wavelets coefficients might only act on a subset of the coefficients. In particular, the

coarsest level might be left unaffected as these are most likely to contain mainly signal

information – here the coarsest two levels are not subject to shrinkage.

4.4 Multiple prior models for wavelet coefficients

As an extension, the various parameters are now allowed to be grouped by wavelet reso-

lution level with the obvious extensions to the definitions given in the previous section.

For the wavelet coefficients, df the Gaussian prior density function becomes

π(df |κ) =
(
κj

π

)(2j−1)/2

exp



−κj

2j−1∑

l=0

df
2
l,j



 , df ∈ R

n;κ > 0,

where κ = (κj : j = 0, . . . , J − 1) with J = log2(n) and df
j are the level j wavelet

coefficients. The Laplace prior density function becomes

π(df |κ) =
(
κj

2

)2j−1

exp



−

2j−1∑

l=0

κj|df l,j|



 , df ∈ R

n;κ > 0,

and for elastic-net based model, the density function is

π(df |κ,γ) =
(

1

Z(κj, γj)

)2j−1

exp

{
− κj

2j−1∑

l=0

(
γjdf

2
j,l + (1− γj)|df j,l|

)}
,

df j ⊂ R
2j−1

;κj > 0, 0 < γj < 1,

where

Z(κj, γj) =





2/κj γj = 0,

2
√
π

√
κjγj

exp

(
κj(1−γj)

2

4γj

)(
1− Φ

(
κj(1−γj)√

2κjγj

))
, 0 < γj < 1,

√
π/κj γj = 1,

for j = 0, . . . , J − 1. Then, with common hyper-prior densities

π(γj) =
Γ(a+ b)

Γ(a)Γ(b)
γa−1
j (1− γj)

b−1, 0 ≤ γj ≤ 1, j = 0, . . . , J − 1; a, b > 0.
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and

π(κj) ∝ exp

(
− c/κj

)
, κj > 0, j = 0, . . . , J − 1; c > 0

The same hyper-prior parameters, a, b and c, are used as in the non-level dependent

densities. As for the single wavelet coefficient prior, again here the coarsest two levels are

not subject to shrinkage.

5 Numerical methods

A standard Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is used

to produce approximate samples from the posterior distribution by simulating a Markov

chain. The use of such methods for parameter estimation, and more general density ex-

ploration, through the Markov chain Monte Carlo (MCMC) approach, is widespread – a

review can be found in Robert and Casella (2011), then for theoretical details see Gamer-

man and Lopes (2006); Lui (2001); Brooks et al. (2011), for general practical examples see

the collection by Gilks et al. (1995) and for examples in archaeology see Aykroyd et al.

(2001); Aykroyd and Al-Gezeri (2014).

Based on the various model definitions in the previous section the parameter vector

will simply be referred to as θ = (θ1, . . . , θp) which will represent (df , κ), (df ,κ), (df , κ, γ),

or (df ,κ,γ) as appropriate, with p simply counting the total number of parameters.

The Markov chain can start at any feasible point in the parameter space, let this

arbitrary value be denoted θ0. From this starting value a discrete time Markov chain is

simulated to produce values θ1,θ2, . . . ,θK . The algorithm will now be defined, and is

also summarised in Figure 1.

Consider the Markov chain transition from state θk−1 at time k − 1 to state θk at

time k. One of the simplest schemes, which works well for many applications, is based on

separate single variable updates based on a random walk. That is, at each step only the

value of a single variable is proposed and further that the proposal is a perturbation of

the current value. Suppose that a new value for θi is being proposed, then θki = θk−1
i + ǫ

and an obvious choice is ǫ ∼ N(0, τ 2). This proposal is accepted with probability

min

{
1,

π(θk|y)
π(θk−1|y)

}

otherwise the value is reset with θki = θk−1
i .

Although, the derivation is complicated, the statement and implementation of the al-

gorithm is usually straightforward. The only consideration left is the choice of proposal

variance. When choosing a value for τ 2, it is important to realise that both low and high

values lead to long transient periods and highly correlated samples and hence unreliable
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Set an initial value for θ, call this θ0

Repeat the following steps for k = 1, . . . , K
Repeat the following steps for i = 1, . . . , p

Generate ǫ from a Gaussian distribution N(0, τ 2)

Generate a propose new value θ∗i = θki + ǫ
Evaluate

α = α(θk|θ∗) = min

{
1,

π(θk1 , . . . , θ
k
i−1, θ

∗
i , θk−1

i+1 , . . . , θ
k−1
m |y)

π(θk1 , . . . , θ
k
i−1, θ

k−1
i , θk−1

i+1 , . . . , θ
k−1
m |y)

}

Generate u from a uniform distribution, U(0, 1)

If α > u, accept and set θki = θ∗i , else θki = θk−1
i

End repeat

End repeat

Discard initial values and use remainder to make inference.

Algorithm 1: A single-variable random walk MCMC algorithm.

estimation. A reasonable proposal variance can be chosen adaptively during the early

burn-in period, and it has been proven theoretically that for a wide variety of high dimen-

sional problems an acceptance rate of 23.4% (Gelman et al., 1997) is optimal. Further, to

get good mixing and hence low autocorrelation it may be necessary to include separate

proposal variance for groups of parameters, or even for individual parameters.

If the algorithm is designed carefully, then as the iterations progress the current pa-

rameter set does not depend on the starting values, and the subsequent values can be

treated as a correlated sample from the posterior distribution. Key issues then become

how to judge when this initial transient behaviour has ended, and the chain is in equilib-

rium, and how many iterations to perform to have a sufficiently large sample for reliable

estimation. Further, it is wise to also check Markov chain paths and to calculate sample

autocorrelation functions. For good estimation the paths should look “unstructured” and

the autocorrelation functions be close to zero for all except small lags. A variety of more

formal convergence diagnostics are available, see for example Raftery and Lewis (1995),

Cowles and Carlin (1996) and Geyer (2011). Once the sample has been generated from the

posterior distribution, a number of possible estimators are available. Let θ1,θ2, . . . ,θN be

the MCMC sample collected after equilibrium of the Markov chain has been declared then

the pixel-wise posterior mean and variances can be estimated by the sample mean and

variance. Also, sample percentiles can be used to estimate confidence bounds. Various

options will be needed in the next section.
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6 Application to real data

In this section the results of a real data analysis using the models described earlier are

shown. The cores were extracted from ‘the Park’, Guiting Power in Gloucestershire, which

is a late iron-age farmstead, but were part of a modern investigation. The experiment

consisted of burning to the ground a wooden funeral pyre containing the corpse of a sheep

and covering the burnt area with top-soil. Five cores were removed from the pyre region

of the site, four from the main area of burning and one from the periphery — for more

detail see Allum et al. (1999); Aykroyd and Al-Gezeri (2014). The analysis for the core

from the periphery (Core I) and two of the four cores from the main area (Cores II and

III) will be described in detail.

In turn each of the three prior distributions has been used, and also with single prior

distribution and with multiple, level-specific, prior distributions for the wavelet param-

eters — giving six reconstructions for each dataset. The aim is to produce a piecewise

constant susceptibility profile and hence the Haar wavelet is used. The summary output

will consist of posterior estimates of the underlying magnetic susceptibility function, with

credible intervals, and posterior distributions of wavelet coefficients which allow the easy

identification of substantial wavelet coefficients.

For estimation, the Algorithm 1 was run with a burn in of 1000 iterations, and then

a main run of 10000 iterations. Wavelet coefficients were initialised at zero and prior

parameters at values corresponding to their prior mean. For this problem, it was found

that efficiency can be increased by using individual proposal variances for each parameter.

Large initial values of the proposal variances were set, but these were adjusted automat-

ically every 10 iterations during the burn-in phase to achieve an acceptable acceptance

rate. To reduce autocorrelation the main run was thinned by taking every 10 iterations to

produce a working sample of 1000. Various monitoring plots and statistics were consid-

ered to confirm that the burn-in period was sufficient to consider the remaining iterations

for estimation, and that the main run was sufficiently large for good estimation.
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Figure 3: Examples of monitoring output from elastic-net single prior model: (a)-(c) trace

plots for selected parameters and (d)-(f) corresponding autocorrelation functions.

Figure 3 shows examples of monitoring statistics: a course resolution wavelet coefficient

from resolution level 2 in (a), κ in (b) and γ in (c) with corresponding autocorrelation

functions shown in (d)-(f). These show good mixing with low correlation indicating that

the algorithm is efficient. It is noticeable, however, from (c) and (f), that estimation of γ

is more difficult than the other parameters. Sample size calculations, based on time series

principles (see, for example, Sokal, 1989), suggest that about 500 iterations are required

— which is well within the size of the working sample. The working sample of size 1000

can now be used for parameter estimation and other inference. For example, using the

posterior mean or median as point estimates and 95% credible intervals calculated based

on posterior variance or posterior percentiles.

Figure 4 summarises the estimation of the wavelet coefficients using a novel augmented

wavelet tableaux — for details of the standard version see, for example, Donoho and

Johnstone (1994) or Silverman (1999). For ease of interpretation only the coarsest five

resolution levels are shown and a common scale is used throughout to allow comparison.

The resolution level is shown on the vertical scale, with 0 being the coarsest. At level

0 there is a single wavelets coefficient, at level 1 there are two etc. The horizontal scale

shows the location of the wavelet as a proportion of the total length. The single level

0 coefficient multiplies a wavelet which spans the full width, each of the two level 1

13



coefficients multiplies a wavelet which spans only half the full interval etc. The full

wavelet approximation is then given by the summation of all these contributions.

The posterior sample for each wavelet coefficient is summarised using a block whose

height is proportional to the posterior mean and whose width is inversely proportional

to the posterior standard deviation — this means that the area of a block is a measure

of significance of that coefficient. Those with a credible interval including zero are show

in red. The top row summarises results using the models from a single prior distribu-

tion for the wavelet coefficients, and the bottom row the corresponding model but for

multiple level-specific prior distributions. Those in the left-hand column use the Laplace

distribution, the middle use the elastic-net based distribution, and those on the right use

a Gaussian model. Note that in these graphs only the relative coefficient estimates and

variability can be seen.
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Figure 4: Pyre core I. Wavelet coefficient posterior distributions showing the five coarsest

levels using the following prior: (a) single Laplace, (b) single elastic-net, (c) single Gaus-

sian, (d) level-specific Laplace, (e) level-specific elastic-net, (f) level-specific Gaussian.

For all models the posterior variability is very small compared to the magnitude of

the coefficients, but there is interesting detail. The significant wavelet coefficients are

generally the same, although there are a greater number in the Gaussian case. It is very

noticeable that when multiple level-specific prior models are used the variability is lower.
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Laplace Elastic net Gaussian

Pyre I

κ̂ 236.6 236.4 143.6

(231.2,241.9) (231.3,241.4) (141.28,146.02)

γ̂ - 0.9999 -

(0.9995,1.000)

Pyre II

κ̂ 186.5 186.6 83.7

(183,190.4) (182.9,189.9) (82.6,84.9)

γ̂ - 1.000 -

(0.9998,1.000)

Pyre III

κ̂ 215.3 215.6 124.3

(210.9,220.0) (211.3,220.1) (122.4,126.3)

γ̂ - 0.9999 -

(0.9996,1.000)

Table 1: Parameter estimates (with 95% credible intervals) for the single prior model.

Estimates of the prior parameters are shown numerically for the single prior models in

Table 1 and graphically in Figure 5 for the multiple level-specific model prior parameters.

1 2 3 4 5 6 7

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Resolution level

K
ap

pa
 p

ar
am

et
er

(a)

1 2 3 4 5 6 7

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Resolution level

K
ap

pa
 p

ar
am

et
er

(b)

1 2 3 4 5 6 7

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Resolution level

K
ap

pa
 p

ar
am

et
er

(c)

1 2 3 4 5 6 7

0e
+0

0
4e

−0
4

8e
−0

4

Resolution level

G
am

m
a 

pa
ra

m
et

er

(d)

Figure 5: Pyre core I. Boxplots of multiple level-specific parameters: (a) κ̂ for the Laplace,

(b) κ̂ for the elastic-net, (c) κ̂ for the Gaussian, (d) γ̂ for the elastic-net.

In Figure 5, panel (a) shows κ for the Laplace, (b) the elastic-net and (c) Gaussian
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prior, with (d) showing γ for the elastic-net – recalling that γ = 1 for the Laplace and

γ = 0 for the Gaussian. A horizontal blue line, surrounded by blue dotted lines, show the

posterior mean and 95% credible interval for the corresponding parameter in the single

prior model. These are representative of all cases, and in fact there is a largely similar

pattern for all three prior models. There are lower values of κ for course resolutions

(Levels 2, 3 and 4) and high values for other levels with a downward trend moving from

Level 6 to Level 8. The estimates of γ are all very small, but all significantly away from

the value in the corresponding parameter of the single prior model. Most interestingly,

all estimates for γ are close to zero, that is they lead to a prior close to the Gaussian.
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Figure 6: Pyre core I. Posterior mean (line) with point-wise 95% credible interval (grey)

using the following prior: (a) single Laplace, (b) single elastic-net, (c) single Gaussian,

(d) level-specific Laplace, (e) level-specific elastic-net, (f) level-specific Gaussian.

Figure 6 shows the magnetic susceptibility reconstructions based on the posterior

median estimate where the hyper-parameters κ and γ are estimated using both single

prior distributions (top row) and multiple level-specific prior distributions (bottom row)

– this layout is as in earlier figure. The posterior estimate is shown as a line surrounded

by a, very narrow, point-wise 95% credible interval shown in grey estimated using the

sample percentiles. The most noticeable feature is the very poor performance of the single

Gaussian wavelet prior model — the reconstruction is totally unacceptable as even the
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known discontinuities at 0 and 150mm are masked by smoothing. The other combinations

are acceptable, but there are clear benefits from using the multiple level-specific prior

distributions for the wavelet coefficients as these lead to cleaner jumps and flatter tops in

the reconstructions. Of the level-specific prior models, the Laplace reconstruction appears

slightly better and uses fewer wavelet coefficients.

Figure 7 shows the wavelet tableaux corresponding to Core II with the same con-

clusions as from the Core I data. Any of the reconstruction, except the single Gaussian

prior, produce a very sparse representation. The magnetic susceptibility profiles in Figure

8 clearly separate the core into three parts for the Laplace prior and the elastic-net prior

model, whereas for the single prior Gaussian the reconstruction is unacceptable. Again,

the slightly better is the multiple level-specific prior Laplace prior.
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Figure 7: Core II. Wavelet coefficient posterior distributions showing the five coarsest lev-

els using the following prior: (a) single Laplace, (b) single elastic-net, (c) single Gaussian,

(d) level-specific Laplace, (e) level-specific elastic-net, (f) level-specific Gaussian.
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Figure 8: Core II. Posterior mean (line) with point-wise 95% credible interval (grey)

using the following prior: (a) single Laplace, (b) single elastic-net, (c) single Gaussian,

(d) level-specific Laplace, (e) level-specific elastic-net, (f) level-specific Gaussian.

Figure 9 show the reconstructions and wavelet tableaux corresponding to Core III

with similar conclusions as from the previous core data. That is that the single Gaussian

prior is unacceptable, and that the multiple level-specific models perform better than the

single prior models. However, here the best reconstructions are with the multiple prior

elastic-net and Gaussian models, obtained using only six wavelet coefficients.
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Figure 9: Core III. Wavelet coefficient posterior distributions showing the five coarsest

levels using prior models: (a) single Laplace, (b) single elastic-net, (c) single Gaussian,

(d) level-specific Laplace, (e) level-specific elastic-net, (f) level-specific Gaussian.
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Figure 10: Pyre core III. Posterior mean (line) with point-wise 95% credible interval (grey)

using the following prior: (a) single Laplace, (b) single elastic-net, (c) single Gaussian,

(d) level-specific Laplace, (e) level-specific elastic-net, (f) level-specific Gaussian.

7 Discussion

The aim of this work was to investigate the use of wavelet-based models for the estima-

tion of piecewise constant functions in inverse problems. A general framework for dealing

with such problems has been laid-out within which alternative model components can be

considered in the future. The MCMC algorithm described provides a simple method to es-

timate wavelet coefficients, but also it allows functions of the parameters to be considered.

Here, the underlying susceptibility profile is such a function of the wavelet coefficients,

and hence can be estimated easily. Moreover, credible intervals and other measures of

uncertainty can be considered, and novel graphical summaries can be produced.

Although the Laplace distribution continues to provide a good choice of wavelet coef-

ficient prior model as in other applications, the use of the elastic-net based generalisation

proposed here has been demonstrated to be a flexible alternative. More importantly, the

proposed use of multiple prior distributions to model the wavelet coefficients at difference

resolution levels separately is very beneficial. Further, once a move to multiple prior dis-

tributions has been made then there is little to choose between the exact form, such as
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Laplace, Gaussian or elastic-net, leading to greater robustness — a similar observation

was made for 2d estimation in Aykroyd (1998). It is likely that this combination will

also be fruitful in other applications. Future work in this area is planned, which will con-

sider recent extensions to wavelet coefficient prior modelling using mixture distributions

(see for example, Johnstone and Silverman, 2005) and to prior distributions which use

information from the neighbouring wavelet coefficients (Cai, 2008).

Inverse problems are widely encountered in the applied sciences and assumptions of

piecewise constant, or at least piecewise smooth functions, are common. It is usual,

however, to use prior distributions explicitly in terms of the function values themselves

which usually lead to poor reconstruction — shrinkage type models move the estimates

towards zero whilst smoothing prior models can destroy sharp discontinuities. Hence, the

approach proposed here has the potential to have significant impact on a wide range of

practical problems.

Acknowledgments

The authors thank the Editor and anonymous referees for their constructive comments

which resulted in this improved version.

References

Abramovich, F. and B. Silverman (1998). Wavelet decomposition approaches to statistical

inverse problems. Biometrika 85(1), pp.115–129.

Allum, G., R. Aykroyd, and J. Haigh (1999). Empirical Bayes estimation for archaeolog-

ical stratigraphy. Journal of the Royal Statistical Society, Series C 48, 1–14.

Aykroyd, R. G. (1998). Bayesian estimation for homogeneous and inhomogeneous Gaus-

sian random fields. IEEE Trans. PAMI 20, 533–539.

Aykroyd, R. G. (2015). Industrial tomography: Systems and applications, Chapter Sta-

tistical image reconstruction, pp. 401–427.

Aykroyd, R. G. and S. M. Al-Gezeri (2014). 3D modelling and depth estimation in

archaeological geophysics. Chilean Journal of Statistics 5, 19–35.

Aykroyd, R. G., J. G. B. Haigh, and G. T. Allum (2001). Bayesian methods applied

to survey data from archaeological magnetometry. Journal of the American Statistical

Association 96, 64–76.

21



Berger, J. O. and L. R. Pericchi (2001). Objective Bayesian Methods for Model Selection:

Introduction and Comparison, Volume 38 of Lecture Notes–Monograph Series, pp. 135–

207. Beachwood, OH: Institute of Mathematical Statistics.

Besag, J. (1989). Towards Bayesian image analysis. Journal of Applied Statistics 16,

395–407.

Bracewell, R. (1986). The Fourier transform and its applications (2nd edition ed.). Mc-

Graw and Hill.

Brooks, S., A. Gelman, G. Jones, and X.-L. Meng (2011). Handbook of Markov Chain

Monte Carlo. Chapman & Hall/CRC.

Cai, T. T. (2008). On information pooling, adaptability and superefficiency in non-

parametric function estimation. Journal of Multivariate Analysis 99, 412–436.

Champeney, D. (1987). A handbook of Fourier theorems. Cambridge University Press.

Cowles, M. K. and B. P. Carlin (1996). Markov chain Monte Carlo convergence diagnos-

tics:A comparative review. Journal of the American Statistical Association 91, 883–904.

Daubechies, I. (1988). Orthogonal bases of compactly suported wavelets. Comm. Pure

and Appl. Maths. 41, 909–996.

Donoho, D. L. (1995). Nonlinear solution of linear inverse problems by wavelet vaguelette-

decomposition. Applied and Computational Harmonic Analysis 2, 101?126.

Donoho, D. L. and I. M. Johnstone (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika 81, 425–455.

Gamerman, D. and H. F. Lopes (2006). Markov Chain Monte Carlo: Stochastic Simu-

lation for Bayesian Inference (2nd ed.). Chapman & Hall/CRC Texts in Statistical

Science.

Gelman, A., W. R. Gilks, and G. O. Roberts (1997). Weak convergence and optimal scal-

ing of random walk metropolis algorithms. Ann. Appl. Probab. 7, Ann. Appl. Probab.

Geyer, C. J. (2011). Introduction to Markov Chain Monte Carlo. In S. Brooks, A. Gelman,

G. L. Jones, and X.-L. Meng (Eds.), Handbook of Markov Chain Monte Carlo. Chapman

and Hall/CRC.

Gilks, W., S. Richardson, and D. Spiegelhalter (1995). Markov Chain Monte Carlo in

Practice. Chapman & Hall/CRC.

22



Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction (Second ed.). Springer Series in Statistics.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains, and their

applications. Biometrika 57, 97–109.

Johnstone, I. M. and B. W. Silverman (2005). Empirical bayes selection of wavelet thresh-

olds. Ann. Statist. 33, 1700–1752.

Le Borgne, E. (1960). Influence du feu sur les proprietés magnétiques du sol. Annales

Geophysiqu 16 (159–195).

Lui, J. (2001). Monte Carlo Strategies in Scientific Computing. Berlin: Springer-Verlag.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equations

of state calculations by fast computing machines. J. Chemical Physics 21, 1087–1091.

Nason, G. (2010). Wavelet methods in statistics with R. New York: Springer.

Nason, G. P. (2008). Wavelet Methods in Statistics with R. New York: spr.

Press, W.H., T. S. V. W. and B. Flannery (1992). Numerical Recipes in FORTRAN: the

art of scientific computing (2nd edition ed.). Cambridge University Press.

Raftery, A. and S. Lewis (1995). The number of iterations, convergence diagnostics and

generic Metropolis algorithms. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter

(Eds.), Practical Markov Chain Monte Carlo. Chapman and Hall.

Ribés, A. and F. Schmitt (2008). Linear inverse problems in imaging. IEEE Signal

Processing Magazine 25, 84 – 99.

Robert, C. and G. Casella (2011). A short history of Markov chain Monte Carlo: Subjec-

tive recollections from incomplete data. Statistical Science 26, 102–115.

Silverman, B. W. (1999). Wavelets in statistics: beyond the standard assumptions. Philo-

sophical Transactions of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences 357(1760), pp.2459–2473.

Sokal, A. D. (1989). Monte Carlo methods in statistical mechanics: foundations and new

algorithms. Cours de Troisième Cycle de la Physique en Suisse Romande, Lausanne.

Stuart, A. M. (2010). Inverse problems: A Bayesian perspective. Acta Numerica 19,

451–559.

23



Appendix: Normalization of the elastic-net density

The normalization constant is defined by the following integral

Z(κ, γ) =

∫
exp

{
−κ(γdg

2 + (1− γ)|dg|)
}
ddg, (1)

then suppose A = κγ and B = κ(1− γ), giving

Z(κ, γ) =

∫
exp

{
−(Adg

2 +B|dg|)
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ddg
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(2)

Now, let v =
√
2A(dg − B

2A
) and u =

√
2A(dg +

B
2A
), hence
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