10 research outputs found

    First detection of TEM-116 extended-spectrum β-lactamase in a Providencia stuartii isolate from a Tunisian hospital

    No full text
    Purpose: To study the resistance to third-generation cephalosporins in Providencia stuartii strain isolated from hospitalized patient in Tunisia and to identify the responsible genes Materials and Methods: This strain was analysed by PCR and sequencing to identify the genes responsible for the β-lactamase resistance phenotypes. The transferability of the phenotypes was tested by conjugation to Escherichia coli J53. The isoelectric point was determinate by isoelectrofocalisation. Results: This resistance was carried by a 60 kb plasmid that encoded a β-lactamase with a pI of 5.4. This β-lactamase revealed identity with the blaTEM-1 gene encoding the TEM-1 β-lactamase, except for a replacement of the Val residue at position 84 by Ile, and the Ala residue at position 184 by Val. These two mutations were encountered in TEM-116 β-lactamase. Conclusion: This study demonstrates the first description of TEM-116 in the P. stuartii species in the world and the first one in a Tunisian hospital

    Virulence genes and subclone status as markers of experimental virulence in a murine sepsis model among Escherichia coli sequence type 131 clinical isolates from Spain

    No full text
    OBJECTIVE: To assess experimental virulence among sequence type 131 (ST131) Escherichia coli bloodstream isolates in relation to virulence genotype and subclone. METHODS: We analysed 48 Spanish ST131 bloodstream isolates (2010) by PCR for ST131 subclone status (H30Rx, H30 non-Rx, or non-H30), virulence genes (VGs), and O-type. Then we compared these traits with virulence in a murine sepsis model, as measured by illness severity score (ISS) and rapid lethality (mean ISS ≥ 4). RESULTS: Of the 48 study isolates, 65% were H30Rx, 21% H30 non-Rx, and 15% non-H30; 44% produced ESBLs, 98% were O25b, and 83% qualified as extraintestinal pathogenic E. coli (ExPEC). Of 49 VGs, ibeA and iss were associated significantly with non-H30 isolates, and sat, iha and malX with H30 isolates. Median VG scores differed by subclone, i.e., 12 (H30Rx), 10 (H30 non-Rx), and 11 (non-H30) (p < 0.01). Nearly 80% of isolates represented a described virotype. In mice, H30Rx and non-H30 isolates were more virulent than H30 non-Rx isolates (according to ISS [p = 0.03] and rapid lethality [p = 0.03]), as were ExPEC isolates compared with non-ExPEC isolates (median ISS, 4.3 vs. 2.7: p = 0.03). In contrast, most individual VGs, VG scores, VG profiles, and virotypes were not associated with mouse virulence. CONCLUSIONS: ST131 subclone and ExPEC status, but not individual VGs, VG scores or profiles, or virotypes, predicted mouse virulence. Given the lower virulence of non-Rx H30 isolates, hypervirulence probably cannot explain the ST131-H30 clade's epidemic emergence

    An overview of the antimicrobial resistance mechanisms of bacteria

    No full text
    corecore