125 research outputs found

    Anterior Chamber Angle Evaluation Using Gonioscopy: Consistency and Agreement between Optometrists and Ophthalmologists

    Full text link
    SIGNIFICANCE In our intermediate-tier glaucoma care clinic, we demonstrate fair to moderate agreement in gonioscopy examination between optometrists and ophthalmologists, but excellent agreement when considering open versus closed angles. We highlight the need for increased consistency in the evaluation and recording of angle status using gonioscopy. PURPOSE The consistency of gonioscopy results obtained by different clinicians is not known but is important in moving toward practice modalities such as telemedicine and collaborative care clinics. The purpose of this study was to evaluate the description and concordance of gonioscopy results among different practitioners. METHODS The medical records of 101 patients seen within a collaborative care glaucoma clinic who had undergone gonioscopic assessment by two clinicians (one optometrist and either one general ophthalmologist [n = 50] or one glaucoma specialist [n = 51]) were reviewed. The gonioscopy records were evaluated for their descriptions of deepest structure seen, trabecular pigmentation, iris configuration, and other features. These were compared between clinicians (optometrist vs. ophthalmologist) and against the final diagnosis. RESULTS Overall, 51.9 and 59.8% of angles were graded identically in terms of deepest visible structure when comparing between optometrist versus general ophthalmologist and optometrist versus glaucoma specialist, respectively. The concordance increased when considering ±1 of the grade (67.4 and 78.5%, respectively), and agreement with the final diagnosis was high (>90%). Variations in angle grading other than naming structures were observed (2.0, 30, and 3.9% for optometrist, general ophthalmologist, and glaucoma specialist, respectively). Most of the time, trabecular pigmentation or iris configuration was not described. CONCLUSIONS Fair to moderate concordance in gonioscopy was achieved between optometrists and ophthalmologists in a collaborative care clinic in which there is consistent feedback and clinical review. To move toward unified medical records and a telemedicine model, improved consistency of record keeping and angle description is required

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    On the Hydrogen Oxalate Binding Motifs onto Dinuclear Cu and Ag Metal Phosphine Complexes

    Get PDF
    We report the binding geometries of the isomers that are formed when the hydrogen oxalate ((CO2_{2})2_{2}H=HOx_{x}) anion attaches to dinuclear coinage metal phosphine complexes of the form [M1_{1}M2_{2}dcpm2_{2}(HOx)]+^{+} with M=Cu, Ag and dcpm=bis(dicyclohexylphosphino)methane, abbreviated [MM]+^{+}. These structures are established by comparison of isomer-selective experimental vibrational band patterns displayed by the cryogenically cooled and N2_{2}-tagged cations with DFT calculations of the predicted spectra for various local minima. Two isomeric classes are identified that feature either attachment of the carboxylate oxygen atoms to the two metal centers (end-on docking) or attachment of oxygen atoms on different carbon atoms asymmetrically to the metal ions (side-on docking). Within each class, there are additional isomeric variations according to the orientation of the OH group. This behavior indicates that HOx undergoes strong and directional coordination to [CuCu]+^{+} but adopts a more flexible coordination to [AgAg]+^{+}. Infrared spectra of the bare ions, fragmentation thresholds and ion mobility measurements are reported to explore the behaviors of the complexes at ambient temperature

    Optimising the glaucoma signal/noise ratio by mapping changes in spatial summation with area-modulated perimetric stimuli

    Get PDF
    Identification of glaucomatous damage and progression by perimetry are limited by measurement and response variability. This study tested the hypothesis that the glaucoma damage signal/noise ratio is greater with stimuli varying in area, either solely, or simultaneously with contrast, than with conventional stimuli varying in contrast only (Goldmann III, GIII). Thirty glaucoma patients and 20 age-similar healthy controls were tested with the Method of Constant Stimuli (MOCS). One stimulus modulated in area (A), one modulated in contrast within Ricco's area (C R ), one modulated in both area and contrast simultaneously (AC), and the reference stimulus was a GIII, modulating in contrast. Stimuli were presented on a common platform with a common scale (energy). A three-stage protocol minimised artefactual MOCS slope bias that can occur due to differences in psychometric function sampling between conditions. Threshold difference from age-matched normal (total deviation), response variability, and signal/noise ratio were compared between stimuli. Total deviation was greater with, and response variability less dependent on defect depth with A, AC, and C R stimuli, compared with GIII. Both A and AC stimuli showed a significantly greater signal/noise ratio than the GIII, indicating that area-modulated stimuli offer benefits over the GIII for identifying early glaucoma and measuring progression

    Choriocarcinoma in a 73-year-old woman: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Choriocarcinoma is a highly malignant tumor of trophoblastic origin. Most cases present within one year of the antecedent pregnancy (molar or non-molar). However, very rarely, choriocarcinoma can develop from germ cells or from dedifferentiation of endometrial carcinoma into choriocarcinoma. This article concerns a case of choriocarcinoma developing 38 years after the patient's last pregnancy and 23 years after menopause.</p> <p>Case presentation</p> <p>A 73-year-old African-American woman presented with a three-week history of vaginal bleeding. A vaginal mass was seen on pelvic examination. Ultrasonography showed a thickened complex endometrial echo. Her β-human chorionic gonadotrophin level was found to be elevated (2,704,040 mIU/mL). Vaginal and uterine biopsies were suggestive of choriocarcinoma. Immunohistochemistry tests were positive for β-human chorionic gonadotrophin as well as cytokeratin and negative for octamer binding transcription factor 3/4 and α-fetoprotein, supporting the diagnosis of choriocarcinoma. A combination of etoposide, methotrexate, and dactinomycin, followed by cyclophosphamide and vincristine (the so-called EMA/CO regimen) was initiated. After seven cycles of chemotherapy, her β-human chorionic gonadotrophin level dropped below 5 mIU/mL. Our patient is being followed up at our oncology institute.</p> <p>Conclusions</p> <p>We report an extremely rare case of choriocarcinoma arising 23 years after menopause. A postmenopausal woman presenting with vaginal bleed from a mass and β-human chorionic gonadotrophin elevation should be evaluated by immunohistochemical analysis to rule out the possibilities of a germ cell origin of the tumor or dedifferentiation of an epithelial tumor. Absence of octamer binding transcription factor 3/4, α-fetoprotein and CD-30 staining helps in exclusion of most germ cell tumors. DNA polymorphism studies can be used to differentiate between gestational and non-gestational tumor origin. These require fresh tissue samples and are time consuming. Finally, the effective first-line therapy for β-human chorionic gonadotrophin-producing high-risk gestational as well as non-gestational trophoblastic tumors is combination chemotherapy (the EMA/CO regimen). Therefore, treatment should be commenced when a potential diagnosis of metastatic trophoblastic tumor is being considered.</p

    Context and Crowding in Perceptual Learning on a Peripheral Contrast Discrimination Task: Context-Specificity in Contrast Learning

    Get PDF
    Perceptual learning is an improvement in sensitivity due to practice on a sensory task and is generally specific to the trained stimuli and/or tasks. The present study investigated the effect of stimulus configuration and crowding on perceptual learning in contrast discrimination in peripheral vision, and the effect of perceptual training on crowding in this task. 29 normally-sighted observers were trained to discriminate Gabor stimuli presented at 9° eccentricity with either identical or orthogonally oriented flankers with respect to the target (ISO and CROSS, respectively), or on an isolated target (CONTROL). Contrast discrimination thresholds were measured at various eccentricities and target-flanker separations before and after training in order to determine any learning transfer to untrained stimulus parameters. Perceptual learning was observed in all three training stimuli; however, greater improvement was obtained with training on ISO-oriented stimuli compared to CROSS-oriented and unflanked stimuli. This learning did not transfer to untrained stimulus configurations, eccentricities or target-flanker separations. A characteristic crowding effect was observed increasing with viewing eccentricity and decreasing with target-flanker separation before and after training in both configurations. The magnitude of crowding was reduced only at the trained eccentricity and target-flanker separation; therefore, learning for contrast discrimination and for crowding in the present study was configuration and location specific. Our findings suggest that stimulus configuration plays an important role in the magnitude of perceptual learning in contrast discrimination and suggest context-specificity in learning

    Genome-wide detection of a TFIID localization element from an initial human disease mutation

    Get PDF
    Eukaryotic core promoters are often characterized by the presence of consensus motifs such as the TATA box or initiator elements, which attract and direct the transcriptional machinery to the transcription start site. However, many human promoters have none of the known core promoter motifs, suggesting that undiscovered promoter motifs exist in the genome. We previously identified a mutation in the human Ankyrin-1 (ANK-1) promoter that causes the disease ankyrin-deficient Hereditary Spherocytosis (HS). Although the ANK-1 promoter is CpG rich, no discernable basal promoter elements had been identified. We showed that the HS mutation disrupted the binding of the transcription factor TFIID, the major component of the pre-initiation complex. We hypothesized that the mutation identified a candidate promoter element with a more widespread role in gene regulation. We examined 17 181 human promoters for the experimentally validated binding site, called the TFIID localization sequence (DLS) and found three times as many promoters containing DLS than TATA motifs. Mutational analyses of DLS sequences confirmed their functional significance, as did the addition of a DLS site to a minimal Sp1 promoter. Our results demonstrate that novel promoter elements can be identified on a genome-wide scale through observations of regulatory disruptions that cause human disease

    Theoretical Analysis of Competing Conformational Transitions in Superhelical DNA

    Get PDF
    We develop a statistical mechanical model to analyze the competitive behavior of transitions to multiple alternate conformations in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. Since DNA superhelicity topologically couples together the transition behaviors of all base pairs, a unified model is required to analyze all the transitions to which the DNA sequence is susceptible. Here we present a first model of this type. Our numerical approach generalizes the strategy of previously developed algorithms, which studied superhelical transitions to a single alternate conformation. We apply our multi-state model to study the competition between strand separation and B-Z transitions in superhelical DNA. We show this competition to be highly sensitive to temperature and to the imposed level of supercoiling. Comparison of our results with experimental data shows that, when the energetics appropriate to the experimental conditions are used, the competition between these two transitions is accurately captured by our algorithm. We analyze the superhelical competition between B-Z transitions and denaturation around the c-myc oncogene, where both transitions are known to occur when this gene is transcribing. We apply our model to explore the correlation between stress-induced transitions and transcriptional activity in various organisms. In higher eukaryotes we find a strong enhancement of Z-forming regions immediately 5′ to their transcription start sites (TSS), and a depletion of strand separating sites in a broad region around the TSS. The opposite patterns occur around transcript end locations. We also show that susceptibility to each type of transition is different in eukaryotes and prokaryotes. By analyzing a set of untranscribed pseudogenes we show that the Z-susceptibility just downstream of the TSS is not preserved, suggesting it may be under selection pressure

    TFEB regulates murine liver cell fate during development and regeneration

    Get PDF
    It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer
    corecore