89 research outputs found

    The X-shaped Radio Galaxy J0725+5835 is Associated with an AGN Pair

    Get PDF
    X-shaped radio galaxies (XRGs) are those that exhibit two pairs of unaligned radio lobes (main radio lobes and wings). One of the promising models for the peculiar morphology is jet reorientation. To clarify this, we conducted a 5 GHz observation with the European VLBI Network (EVN) of XRG J0725+5835, which resembles the archetypal binary active galactic nuclei (AGNs) 0402+379 in radio morphology, but it is larger in angular size. In our observation, two milliarcsecond-scale radio components with nonthermal radio emission are detected. Each of them coincides with an optical counterpart with similar photometric redshift and (optical and infrared) magnitude, corresponding to dual active nuclei. Furthermore, with the improved Very Large Array (VLA) images, we find a bridge between the two radio cores and a jet bending in the region surrounding the companion galaxy. This further supports the interplay between the main and companion galaxies. In addition, we also report the discovery of an arcsecond-scale jet in the companion. Given the projected separation of similar to 100 kpc between the main and companion galaxies, XRG J0725+5835 is likely associated with a dual jetted-AGN system. In both EVN and VLA observations, we find signatures that the jet is changing its direction, which is likely responsible for the X-shaped morphology. For the origin of jet reorientation, several scenarios are discussed

    Crisaborole Ointment, 2%, for Treatment of Patients with Mild-to-Moderate Atopic Dermatitis:Systematic Literature Review and Network Meta-Analysis

    Get PDF
    The authors would like to replace 2 small sections of the published manuscript that refer to a qualitative review of safety data for included studies (together with an associated safety table), to provide some further clarifications on these safety data and to include some quantitative updates for rates

    TBC1D3, a Hominoid-Specific Gene, Delays IRS-1 Degradation and Promotes Insulin Signaling by Modulating p70 S6 Kinase Activity

    Get PDF
    Insulin/IGF-1 signaling plays a pivotal role in the regulation of cellular homeostasis through its control of glucose metabolism as well as due to its effects on cell proliferation. Aberrant regulation of insulin signaling has been repeatedly implicated in uncontrolled cell growth and malignant transformations. TBC1D3 is a hominoid specific gene previously identified as an oncogene in breast and prostate cancers. Our efforts to identify the molecular mechanisms of TBC1D3-induced oncogenesis revealed the role of TBC1D3 in insulin/IGF-1 signaling pathway. We document here that TBC1D3 intensifies insulin/IGF-1-induced signal transduction through intricate, yet elegant fine-tuning of signaling mechanisms. We show that TBC1D3 expression substantially delayed ubiquitination and degradation of insulin receptor substrate-1 (IRS-1). This effect is achieved through suppression of serine phosphorylation at S636/639, S307 and S312 of IRS-1, which are key phosphorylation sites required for IRS-1 degradation. Furthermore, we report that the effect of TBC1D3 on IRS-1:S636/639 phosphorylation is mediated through TBC1D3-induced activation of protein phosphatase 2A (PP2A), followed by suppression of T389 phosphorylation on p70 S6 kinase (S6K). TBC1D3 specifically interacts with PP2A regulatory subunit B56Îł, indicating that TBC1D3 and PP2A B56Îł operate jointly to promote S6K:T389 dephosphorylation. These findings suggest that TBC1D3 plays an unanticipated and potentially unique role in the fine-tuning of insulin/IGF-1 signaling, while providing novel insights into the regulation of tumorigenesis by a hominoid-specific protein

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    First measurement of the C P -violating phase in B s 0 → J / ψ ( → e + e - ) ϕ decays

    Get PDF
    Abstract: A flavour-tagged time-dependent angular analysis of Bs0→J/ψϕ decays is presented where the J/ψ meson is reconstructed through its decay to an e+e- pair. The analysis uses a sample of pp collision data recorded with the LHCb experiment at centre-of-mass energies of 7 and 8\,Te V, corresponding to an integrated luminosity of 3\,fb-1. The CP-violating phase and lifetime parameters of the Bs0 system are measured to be ϕs=0.00±0.28±0.07\,rad, ΔΓs=0.115±0.045±0.011\,ps-1 and Γs=0.608±0.018±0.012\,ps-1 where the first uncertainty is statistical and the second systematic. This is the first time that CP-violating parameters are measured in the Bs0→J/ψϕ decay with an e+e- pair in the final state. The results are consistent with previous measurements in other channels and with the Standard Model predictions

    Search for the doubly charmed baryon Ω cc +

    Get PDF
    Abstract: A search for the doubly charmed baryon Ωcc+ with the decay mode Ωcc+ → Ξc+K−π+ is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment from 2016 to 2018, corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is observed within the invariant mass range of 3.6 to 4.0GeV/c2. Upper limits are set on the ratio R of the production cross-section times the total branching fraction of the Ωcc+ → Ξc+K−π+ decay with respect to the Ξcc++→Λc+K−π+π+ decay. Upper limits at 95% credibility level for R in the range 0.005 to 0.11 are obtained for different hypotheses on the Ωcc+ mass and lifetime in the rapidity range from 2.0 to 4.5 and transverse momentum range from 4 to 15 GeV/c

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations

    Measurement of the CKM angle γγ in B±→DK±B^\pm\to D K^\pm and B±→Dπ±B^\pm \to D π^\pm decays with D→KS0h+h−D \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±→DK±B^\pm\to D K^\pm and B±→Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+π−K_{\mathrm S}\pi^+\pi^- and KSK+K−K_{\mathrm S}K^+K^- (commonly denoted KSh+h−K_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle Îł\gamma. Using a data sample corresponding to an integrated luminosity of 9 fb−19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13 TeV13\,\text{TeV} with the LHCb experiment, Îł\gamma is measured to be (68.7−5.1+5.2)∘\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, ÎŽBDK\delta_B^{DK}, and ÎŽBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Measurement of CP asymmetries and branching fraction ratios of B− decays to two charm mesons

    Get PDF
    The CPCP asymmetries of seven B−B^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9fb−19\text{fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0D^{*0} or Ds∗−D^{*-}_s meson are analysed by reconstructing only the D0D^0 or Ds−D^-_s decay products. This paper presents the first measurement of ACP(B−→Ds∗−D0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(B−→Ds−D∗0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.The CP asymmetries of seven B−^{−} decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb−1^{−1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0^{*0} or Ds∗− {D}_s^{\ast -} meson are analysed by reconstructing only the D0^{0} or Ds− {D}_s^{-} decay products. This paper presents the first measurement of ACP \mathcal{A} ^{CP}(B−^{−}→Ds∗− {D}_s^{\ast -} D0^{0}) and ACP \mathcal{A} ^{CP}(B−^{−}→Ds− {D}_s^{-} D∗0^{∗0}), and the most precise measurement of the other five CP asymmetries. There is no evidence of CP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.[graphic not available: see fulltext]The CPCP asymmetries of seven B−B^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb−19\text{ fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0D^{*0} or Ds∗−D^{*-}_s meson are analysed by reconstructing only the D0D^0 or Ds−D^-_s decay products. This paper presents the first measurement of ACP(B−→Ds∗−D0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(B−→Ds−D∗0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured
    • 

    corecore