1,059 research outputs found

    New Developments in FormCalc 8.4

    Full text link
    We present new developments in FeynArts 3.9 and FormCalc 8.4, in particular the MSSMCT model file including the complete one-loop renormalization, vectorization/parallelization issues, and the interface to the Ninja library for tensor reduction.Comment: 7 pages, proceedings contribution to Loops & Legs 2014, April 27-May 2, 2014, Weimar, German

    Development of a LED-based PIV/PTV system: Characterization of the flow within a cylinder wall-array in a shallow flow

    Get PDF
    River engineeringInnovative field and laboratory instrumentatio

    Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration

    Full text link
    To clarify a key role of ff orbitals in the emergence of antiferro-quadrupole structure in PrPb3_{3}, we investigate the ground-state property of an orbital-degenerate Kondo lattice model by numerical diagonalization techniques. In PrPb3_{3}, Pr3+^{3+} has a 4f24f^{2} configuration and the crystalline-electric-field ground state is a non-Kramers doublet Γ3\Gamma_{3}. In a jj-jj coupling scheme, the Γ3\Gamma_{3} state is described by two local singlets, each of which consists of two ff electrons with one in Γ7\Gamma_{7} and another in Γ8\Gamma_{8} orbitals. Since in a cubic structure, Γ7\Gamma_{7} has localized nature, while Γ8\Gamma_{8} orbitals are rather itinerant, we propose the orbital-degenerate Kondo lattice model for an effective Hamiltonian of PrPb3_{3}. We show that an antiferro-orbital state is favored by the so-called double-exchange mechanism which is characteristic of multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30, 2007, Kobe

    Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited CARS microscopy

    Get PDF
    We present a theoretical investigation of coherent anti-Stokes Raman scattering (CARS) that is modulated by periodically depleting the ground state population through Rabi oscillations driven by an additional control laser. We find that such a process generates optical sidebands in the CARS spectrum and that the frequency of the sidebands depends on the intensity of the control laser light field. We show that analyzing the sideband frequency upon scanning the beams across the sample allows one to spatially resolve emitter positions where a spatial resolution of 65 nm, which is well below the diffraction-limit, can be obtained

    Biological nitrogen fixation and nifH gene abundance in deadwood of 13 different tree species

    Get PDF

    FPGA Based Tunable Digital Filtering for Closed Loop RF Control in Synchrotrons

    Get PDF

    CuCo2_{2}S4_{4} Deposited on TiO2_{2}: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution

    Get PDF
    Metallic spinel-type CuCo2_{2}S4_{4} nanoparticles were deposited on nanocrystalline TiO2_{2} (P25®), forming heterostructure nanocomposites. The nanocomposites were characterized in detail by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), nitrogen sorption (BET) and UV/Vis spectroscopy. Variation of the CuCo2_{2}S4_{4}:TiO2_{2} ratio to an optimum value generated a catalyst which shows a very high photocatalytic H2_{2} production rate at neutral pH of 32.3 µmol/h (0.72 mLh1^{–1}), which is much larger than for pure TiO2_{2} (traces of H2_{2}). The catalyst exhibits an extraordinary long-term stability and after 70 h irradiation time about 2 mmol H2_{2} were generated. An increased light absorption and an efficient charge separation for the sample with the optimal CuCo2_{2}S4_{4}:TiO2_{2} ratio is most probably responsible for the high catalytic activity

    Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Get PDF
    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release
    corecore