CuCo2_{2}S4_{4} Deposited on TiO2_{2}: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution

Abstract

Metallic spinel-type CuCo2_{2}S4_{4} nanoparticles were deposited on nanocrystalline TiO2_{2} (P25®), forming heterostructure nanocomposites. The nanocomposites were characterized in detail by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), nitrogen sorption (BET) and UV/Vis spectroscopy. Variation of the CuCo2_{2}S4_{4}:TiO2_{2} ratio to an optimum value generated a catalyst which shows a very high photocatalytic H2_{2} production rate at neutral pH of 32.3 µmol/h (0.72 mLh1^{–1}), which is much larger than for pure TiO2_{2} (traces of H2_{2}). The catalyst exhibits an extraordinary long-term stability and after 70 h irradiation time about 2 mmol H2_{2} were generated. An increased light absorption and an efficient charge separation for the sample with the optimal CuCo2_{2}S4_{4}:TiO2_{2} ratio is most probably responsible for the high catalytic activity

    Similar works