2,211 research outputs found
Learning the fundamental mid-infrared spectral components of galaxies with non-negative matrix factorization
The mid-infrared (MIR) spectra observed with the Spitzer Infrared Spectrograph (IRS) provide a valuable data set for untangling the physical processes and conditions within galaxies. This paper presents the first attempt to blindly learn fundamental spectral components of MIR galaxy spectra, using non-negative matrix factorization (NMF). NMF is a recently developed multivariate technique shown to be successful in blind source separation problems. Unlike the more popular multivariate analysis technique, principal component analysis, NMF imposes the condition that weights and spectral components are non-negative. This more closely resembles the physical process of emission in the MIR, resulting in physically intuitive components. By applying NMF to galaxy spectra in the Cornell Atlas of Spitzer/IRS sources, we find similar components amongst different NMF sets. These similar components include two for active galactic nucleus (AGN) emission and one for star formation. The first AGN component is dominated by fine structure emission lines and hot dust, the second by broad silicate emission at 10 and 18 μm. The star formation component contains all the polycyclic aromatic hydrocarbon features and molecular hydrogen lines. Other components include rising continuums at longer wavelengths, indicative of colder grey-body dust emission. We show an NMF set with seven components can reconstruct the general spectral shape of a wide variety of objects, though struggle to fit the varying strength of emission lines. We also show that the seven components can be used to separate out different types of objects. We model this separation with Gaussian mixtures modelling and use the result to provide a classification tool. We also show that the NMF components can be used to separate out the emission from AGN and star formation regions and define a new star formation/AGN diagnostic which is consistent with all MIR diagnostics already in use but has the advantage that it can be applied to MIR spectra with low signal-to-noise ratio or with limited spectral range. The seven NMF components and code for classification are available at https://github.com/pdh21/NMF_software/
The extraordinary mid-infrared spectral properties of FeLoBAL Quasars
We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with
the Spitzer space telescope. The spectra span a range of shapes, from hot dust
dominated AGN with silicate emission at 9.7 microns, to moderately obscured
starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The
spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen
in any QSO at any redshift, implying that the starburst dominates the mid-IR
emission with an associated star formation rate of order 2700 solar masses per
year. With the caveats that our sample is small and not robustly selected, we
combine our mid-IR spectral diagnostics with previous observations to propose
that FeLoBAL QSOs are at least largely comprised of systems in which (a) a
merger driven starburst is ending, (b) a luminous AGN is in the last stages of
burning through its surrounding dust, and (c) which we may be viewing over a
restricted line of sight range.Comment: ApJ, accepte
Keck spectroscopy of z=1-3 ULIRGs from the Spitzer SWIRE survey
(Abridged) High-redshift ultra luminous infrared galaxies contribute the bulk
of the cosmic IR background and are the best candidates for very massive
galaxies in formation at z>1.5. We present Keck/LRIS optical spectroscopy of 35
z>1.4 luminous IR galaxies in the Spitzer Wide-area Infra-Red Extragalactic
survey (SWIRE) northern fields (Lockman Hole, ELAIS-N1, ELAIS-N2). The primary
targets belong to the ``IR-peak'' class of galaxies, having the 1.6 micron
(restframe) stellar feature detected in the IRAC Spitzer channels.The spectral
energy distributions of the main targets are thoroughly analyzed, by means of
spectro-photometric synthesis and multi-component fits (stars + starburst dust
+ AGN torus). The IR-peak selection technique is confirmed to successfully
select objects above z=1.4, though some of the observed sources lie at lower
redshift than expected. Among the 16 galaxies with spectroscopic redshift, 62%
host an AGN component, two thirds being type-1 and one third type-2 objects.
The selection, limited to r'<24.5, is likely biased to optically-bright AGNs.
The SEDs of non-AGN IR-peakers resemble those of starbursts (SFR=20-500
Msun/yr) hosted in massive (M>1e11 Msun) galaxies. The presence of an AGN
component provides a plausible explanation for the spectroscopic/photometric
redshift discrepancies, as the torus produces an apparent shift of the peak to
longer wavelengths. These sources are analyzed in IRAC and optical-IR color
spaces. In addition to the IR-peak galaxies, we present redshifts and spectral
properties for 150 objects, out of a total of 301 sources on slits.Comment: Accepted for publications on Astronomy and Astrophysics (acceprance
date March 8th, 2007). 33 pages. The quality of some figures have been
degrade
Star Formation Rates from [C II] 158 μm and Mid-infrared Emission Lines for Starbursts and Active Galactic Nuclei
A summary is presented for 130 galaxies observed with the Herschel Photodetector Array Camera and Spectrometer instrument to measure fluxes for the [C II] 158 μm emission line. Sources cover a wide range of active galactic nucleus to starburst classifications, as derived from polycyclic aromatic hydrocarbon strength measured with the Spitzer Infrared Spectrograph. Redshifts from [C II] and line to continuum strengths (equivalent width (EW) of [C II]) are given for the full sample, which includes 18 new [C II] flux measures. Calibration of L([C II)]) as a star formation rate (SFR) indicator is determined by comparing [C II] luminosities with mid-infrared [Ne II] and [Ne III] emission line luminosities; this gives the same result as determining SFR using bolometric luminosities of reradiating dust from starbursts: log SFR = log L([C II)]) - 7.0, for SFR in M ⊙ yr-1 and L([C II]) in L ⊙. We conclude that L([C II]) can be used to measure SFR in any source to a precision of ~50%, even if total source luminosities are dominated by an active galactic nucleus (AGN) component. The line to continuum ratio at 158 μm, EW([C II]), is not significantly greater for starbursts (median EW([C II]) = 1.0 μm) compared to composites and AGNs (median EW([C II]) = 0.7 μm), showing that the far-infrared continuum at 158 μm scales with [C II] regardless of classification. This indicates that the continuum at 158 μm also arises primarily from the starburst component within any source, giving log SFR = log νL ν(158 μm) - 42.8 for SFR in M ⊙ yr-1 and νL ν(158 μm) in erg s-1
Mid-Infrared Spectroscopy of Optically Faint Extragalactic 70 micron Sources
We present mid-infrared spectra of sixteen optically faint sources with 70
micron fluxes in the range 19-38mJy. The sample spans a redshift range of
0.35<z<1.9, with most lying between 0.8<z<1.6, and has infrared luminosities of
10^{12} - 10^{13} solar luminosities. Ten of 16 objects show prominent
polycyclic aromatic hydrocarbon (PAH) emission features; four of 16 show weak
PAHs and strong silicate absorption, and two objects have no discernable
spectral features. Compared to samples with 24 micron fluxes >10mJy, the 70\um
sample has steeper IR continua and higher luminosities. The PAH dominated
sources are among the brightest starbursts seen at any redshift, and reside in
a redshift range where other selection methods turn up relatively few sources.
The absorbed sources are at higher redshifts and have higher luminosities than
the PAH dominated sources, and may show weaker luminosity evolution. We
conclude that a 70 micron selection extending to ~20mJy, in combination with
selections at mid-IR and far-IR wavelengths, is necessary to obtain a complete
picture of the evolution of IR-luminous galaxies over 0<z<2.Comment: ApJ accepte
Adaptive optics imaging and optical spectroscopy of a multiple merger in a luminous infrared galaxy
(abridged) We present near-infrared (NIR) adaptive optics imaging obtained
with VLT/NACO and optical spectroscopy from the Southern African Large
Telescope (SALT) of a luminous infrared galaxy (LIRG) IRAS 19115-2124. These
data are combined with archival HST imaging and Spitzer imaging and
spectroscopy, allowing us to study this disturbed interacting/merging galaxy,
dubbed the Bird, in extraordinary detail. In particular, the data reveal a
triple system where the LIRG phenomenon is dominated by the smallest of the
components.
One nucleus is a regular barred spiral with significant rotation, while
another is highly disturbed with a surface brightness distribution intermediate
to that of disk and bulge systems, and hints of remaining arm/bar structure. We
derive dynamical masses in the range 3-7x10^10 M_solar for both. The third
component appears to be a 1-2x10^10 M_solar mass irregular galaxy. The total
system exhibits HII galaxy-like optical line ratios and strengths, and no
evidence for AGN activity is found from optical or mid-infrared data. The star
formation rate is estimated to be 190 M_solar/yr. We search for SNe, super star
clusters, and detect 100-300 km/s outflowing gas from the Bird. Overall, the
Bird shows kinematic, dynamical, and emission line properties typical for cool
ultra luminous IR galaxies. However, the interesting features setting it apart
for future studies are its triple merger nature, and the location of its star
formation peak - the strongest star formation does not come from the two major
K-band nuclei, but from the third irregular component. Aided by simulations, we
discuss scenarios where the irregular component is on its first high-speed
encounter with the more massive components.Comment: 24 pages, 16 figures. Accepted MNRAS version, minor corrections only,
references added. Higher resolution version (1.3MB) is available from
http://www.saao.ac.za/~petri/bird/ulirg_bird_highres_vaisanen_v2.pd
Angular clustering of galaxies at 3.6 microns from the Spitzer Wide-area Infrared Extragalactic (SWIRE) Survey
We present the first analysis of large-scale clustering from the Spitzer Wide-area Infrared Extragalactic legacy survey (SWIRE). We compute the angular correlation function of galaxies selected to have 3.6 m fluxes brighter than 32 Jy in three fields totaling 2 deg2 in area. In each field we detect clustering with a high level of significance. The amplitude and slope of the correlation function is consistent between the three fields and is modeled as w() ¼ A1 with A ¼ (0:6 0:3) ; 10 3; ¼ 2:03 0:10. With a fixed slope of ¼ 1:8, we obtain an amplitude of A ¼ (1:7 0:1) ; 10 3. Assuming an equivalent depth of K 18:7 mag we find that our errors are smaller but our results are consistent with existing clustering measurements in K-band surveys and with stable clustering models. We estimate our median redshift z ’ 0:75, and this allows us to obtain an estimate of the three-dimensional correlation function (r), for which we find r0 ¼ 4:4 0:1 h 1 Mpc
Discovery of strongly blue shifted mid-infrared [NeIII] and [NeV] emission in ULIRGs
We report the discovery of blue shifted (delta(V) > 200 km/s) mid-infrared
[NeIII] and/or [NeV] emission in 25 out of 82 ULIRGs (30% of our sample). The
incidence of blue shifted [NeV] emission is even higher (59%) among the sources
with a [NeV] detection -- the tell-tale signature of an active galactic nucleus
(AGN). Sixteen ULIRGs in our sample, eleven of which are optically classified
as AGN, have [NeIII] blue shifts above 200 km/s. A comparison of the line
profiles of their 12.81um [NeII], 15.56um [NeIII] and 14.32um [NeV] lines
reveals the ionization of the blue shifted gas to increase with blue shift,
implying decelerating outflows in a stratified medium, photo-ionized by the
AGN. The strong correlation of the line width of the [NeIII] line with the
radio luminosity indicates that interaction of expanding radio jets with the
dense ISM surrounding the AGN may explain the observed neon line kinematics for
the strongest radio sources in this sample.Comment: Accepted for publication by ApJ Letters. 15 pages, 4 figure
- …
