2,335 research outputs found

    Some don't like it hot: microhabitat-dependent thermal and water stresses in a trailing edge population

    Get PDF
    The distributional limits of species in response to environmental change are usually studied at large temporal and/or geographical scales. However, organismal scale habitat variation can be overlooked when investigating large-scale averages of key factors such as temperature. We examine how microhabitat thermal conditions relate to physiological limits, which may contribute to recent range shifts in an intertidal alga. We defined the onset and maximum temperatures of the heat-shock response (HSR) for a southern edge population of Fucus vesiculosus, which has subsequently become extinct. The physiological threshold for resilience (assayed using chlorophyll fluorescence) coincided with declining HSR, determined from the temperature-dependent induction of seven heat-shock protein transcripts. In intertidal habitats, temperature affects physiology directly by controlling body temperature and indirectly through evaporative water loss. We investigated the relationship between the thermal environment and in situ molecular HSR at microhabitat scales. Over cm to m scales, four distinct microhabitats were defined in algal patches (canopy surface, patch edge, subcanopy, submerged channels), revealing distinct thermal and water stress environments during low-tide emersion. The in situ HSR agreed with estimated tissue temperatures in all but one microhabitat. Remarkably, in the most thermally extreme microhabitat (canopy surface), the HSR was essentially absent in desiccated tissue, providing a potential escape from the cellular metabolic costs of thermal stress. Meteorological records, microenvironmental thermal profiles and HSR data indicate that the maximum HSR is approached or exceeded in hydrated tissue during daytime low tides for much of the year. Furthermore, present-day summer seawater temperatures are sufficient to induce HSR during high-tide immersion, preventing recovery and resulting in continuous HSR during daytime low-tide cycles over the entire summer. HSR in the field matched microhabitat temperatures more closely than local seawater or atmospheric data, suggesting that the impacts of climatic change are best understood at the microhabitat scale, particularly in intertidal areas.FCT - Portuguese Science Foundation [POCTI/MAR/61105/2004, EXCL/AAG-GLO/0661/2012, SFRH/BPD/63/03/2009, SFRH/BD/74436/2010]info:eu-repo/semantics/publishedVersio

    A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity

    Get PDF
    Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio

    Characterization and comparison of bacterial communities of an invasive and two native Caribbean seagrass species sheds light on the possible influence of the microbiome on invasive mechanisms

    Get PDF
    Invasive plants, including marine macrophytes, are one of the most important threats to biodiversity by displacing native species and organisms depending on them. Invasion success is dependent on interactions among living organisms, but their study has been mostly limited to negative interactions while positive interactions are mostly underlooked. Recent studies suggested that microorganisms associated with eukaryotic hosts may play a determinant role in the invasion process. Along with the knowledge of their structure, taxonomic composition, and potential functional profile, understanding how bacterial communities are associated with the invasive species and the threatened natives (species-specific/environmentally shaped/tissue-specific) can give us a holistic insight into the invasion mechanisms. Here, we aimed to compare the bacterial communities associated with leaves and roots of two native Caribbean seagrasses (Halodule wrightii and Thalassia testudinum) with those of the successful invader Halophila stipulacea, in the Caribbean island Curaçao, using 16S rRNA gene amplicon sequencing and functional prediction. Invasive seagrass microbiomes were more diverse and included three times more species-specific core OTUs than the natives. Associated bacterial communities were seagrass-specific, with higher similarities between natives than between invasive and native seagrasses for both communities associated with leaves and roots, despite their strong tissue differentiation. However, with a higher number of OTUs in common, the core community (i.e., OTUs occurring in at least 80% of the samples) of the native H. wrightii was more similar to that of the invader H. stipulacea than T. testudinum, which could reflect more similar essential needs (e.g., nutritional, adaptive, and physiological) between native and invasive, in contrast to the two natives that might share more environment-related OTUs. Relative to native seagrass species, the invasive H. stipulacea was enriched in halotolerant bacterial genera with plant growth-promoting properties (like Halomonas sp. and Lysinibacillus sp.) and other potential beneficial effects for hosts (e.g., heavy metal detoxifiers and quorum sensing inhibitors). Predicted functional profiles also revealed some advantageous traits on the invasive species such as detoxification pathways, protection against pathogens, and stress tolerance. Despite the predictive nature of our findings concerning the functional potential of the bacteria, this investigation provides novel and important insights into native vs. invasive seagrasses microbiome. We demonstrated that the bacterial community associated with the invasive seagrass H. stipulacea is different from native seagrasses, including some potentially beneficial bacteria, suggesting the importance of considering the microbiome dynamics as a possible and important influencing factor in the colonization of non-indigenous species. We suggest further comparison of H. stipulacea microbiome from its native range with that from both the Mediterranean and Caribbean habitats where this species has a contrasting invasion success. Also, our new findings open doors to a more in-depth investigation combining meta-omics with bacterial manipulation experiments in order to confirm any functional advantage in the microbiome of this invasive seagrass.CEECINST/00114/2018info:eu-repo/semantics/publishedVersio

    Interactions between seagrasses and seaweeds during surge nitrogen acquisition determine interspecific competition

    Get PDF
    Seagrasses dominate shallow coastal environments where nitrogen (N) availability in the water column is often sporadic and mainly in the form of pulses. We investigated the N uptake competition between seagrasses and seaweeds through a series of N-15 surge uptake experiments combining single-species and mixed incubations across ammonium concentrations. N surge uptake rates of seagrasses were 2 to 14-fold higher than those of seaweeds in the majority of combinations, showing that seagrasses are generally in a competitive advantage over seaweeds in N-poor environments with N-pulses. No threshold concentration of ammonium was found beyond which seaweeds performed better than seagrasses. Mixed incubations revealed interspecific interactions that affected rates positively and negatively. Uptake rates obtained in single-species incubations, therefore, cannot always be used to predict the outcome of uptake competition. Only two (Zostera marina vs. Ulva rotundata and Zostera marina vs. Codium decorticatum) of the nine combinations tested (Z. marina, Z. noltei and Cymodocea nodosa vs. U. rotundata, C. decorticatum and Dictyota dichotoma) were found to enhance macroalgal uptake. Our results showed that the surge uptake capacity of seagrasses represents an important mechanism in their N acquisition strategy that justifies their dominance in shallow oligotrophic environments.Portuguese Foundation for Science and Technology (FCT) [PTDC/MAR/098069/2008, SFRH/BPD/63703/2009]; FCT - Foundation for Science and Technology [CCMAR/Multi/04326/2013

    Shutdown Policies for MEMS-Based Storage Devices -- Analytical Models

    Get PDF
    MEMS-based storage devices should be energy ecient for deployment in mobile systems. Since MEMS-based storage devices have a moving me- dia sled, they should be shut down during periods of inactivity. However, shutdown costs energy, limiting the applicability of aggressive shutdown decisions. The media sled in MEMS-based storage devices is suspended by springs. We introduce a policy that exploits the spring structure to reduce the shut- down energy. As a result, the aggressiveness of the shutdown decisions can be increased, reducing the energy consumption. This report devises analytical models of the shutdown time and energy of this policy

    A Musical instrument in MEMS

    Get PDF
    In this work we describe a MEMS instrument that resonates at audible frequencies, and with which music can be made. The sounds are generated by mechanical resonators and capacitive displacement sensors. Damping by air scales unfavourably for generating audible frequencies with small devices. Therefore a vacuum of 1.5 mbar is used to increase the quality factor and consequently the duration of the sounds to around 0.25 s. The instrument will be demonstrated during the MME 2010 conference opening, in a musical composition especially made for the occasion
    • 

    corecore