232 research outputs found

    Direct Interrogation of Viral Peptides Presented by the Class I HLA of HIV-Infected T Cells

    Get PDF
    Identification of CD8+ cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4+ SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)–mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4+ T cells into strategies designed to enhance T cell immunity

    HLA class I molecules consistently present internal influenza epitopes

    Get PDF
    Cytotoxic T lymphocytes (CTL) limit influenza virus replication and prevent morbidity and mortality upon recognition of HLA class I presented epitopes on the surface of virus infected cells, yet the number and origin of the viral epitopes that decorate the infected cell are unknown. To understand the presentation of influenza virus ligands by human MHC class I molecules, HLA-B*0702-presented viral peptides were directly identified following influenza infection. After transfection with soluble class I molecules, peptide ligands unique to infected cells were eluted from isolated MHC molecules and identified by comparative mass spectrometry (MS). Then CTL were gathered following infection with influenza and viral peptides were tested for immune recognition. We found that the class I molecule B*0702 presents 3-6 viral ligands following infection with different strains of influenza. Peptide ligands derived from the internal viral nucleoprotein (NP418-426 and NP 473-481) and from the internal viral polymerase subunit PB1 (PB1 329-337) were presented by B*0702 following infection with each of 3 different influenza strains; ligands NP418-426, NP 473-481, and PB1329-337 derived from internal viral proteins were consistently revealed by class I HLA. In contrast, ligands derived from hemagglutinin (HA) and matrix protein (M1) were presented intermittently on a strain-by-strain basis. When tested for immune recognition, HLA-B*0702 transgenic mice responded to NP418-426 and PB1 329-337 consistently and NP473-481 intermittently while ligands from HA and M1 were not recognized. These data demonstrate an emerging pattern whereby class I HLA reveal a handful of internal viral ligands and whereby CTL recognize consistently presented influenza ligands

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. © 2013 Kaabinejadian et al

    ‘How can I be post-Soviet if I was never Soviet?’ Rethinking categories of time and social change – a perspective from Kulob, southern Tajikistan

    Get PDF
    Based on anthropological fieldwork conducted in the Kulob region of southern Tajikistan, this paper examines the extent to which the existing periodization ‘Soviet/post-Soviet’ is still valid to frame scholarly works concerning Central Asia. It does so through an analysis of ‘alternative temporalities’ conveyed by Kulob residents to the author. These alternative temporalities are fashioned in especially clear ways in a relationship to the physical transformations occurring to two types of housing, namely flats in building blocks and detached houses. Without arguing that the categories ‘Soviet’ and ‘post-Soviet’ have become futile, the author advocates that the uncritically use of Soviet/post-Soviet has the unwanted effect of shaping the Central Asian region as a temporalized and specialized ‘other’

    Creative Reverse Engineering – from remote sensuality to haptic metrology

    Full text link
    Our ongoing experimentation in close-range Photogrammetry has overcome common challenges to generate accurate, high-resolution 3D models using a single DSLR camera and innovative approaches and computer-coded devices. More recent investigations across disciplines sought to bridge the gap between traditional creative skills and modes of visualisation, and what can be made possible through digital means. Working as artists and designers alongside museums and historians, we have developed new photogrammetry equipment and approaches to help overcome the complex fluid geometry, shadowy occlusions and delicate lamina edges of challenging monochromatic garments. The resulting 3D models have allowed the rapid extraction of faithful seams and surfaces direct from the processed ‘mesh’ and into CAD modelling environments for the production of new designs, patterns and production tooling. Current collaborations seek to apply these developments to the capture, visualisation and reverse engineering of iconic garments and museum artefacts, alongside the 'remote sensing' of traditional pattern cutters whose eyes, minds and hands are the equivalent of the digital approaches explored in our paper. The second phase sought to unpick some of the familiar structures of object- and asset creation in and for Virtual and Augmented Reality. Experimenting with equipment, methods and processing techniques allowed us to explore the potential of 3D visualisations and readily available tools within Virtual and Augmented Reality for garment design and other forms of object-based creative ideation, sketching and prototyping. In the next stages of our ongoing research we explored a more haptic form of CAD-enabled modelling and metrology, aiming to bring these approaches within the reach of a wider range of creative users: enabling artists, designers and makers to move more seamlessly between digital tools and virtual environments, and actual things in real time and space

    Postcolonial manifestations of African spatiality in Europe : the invisible 'public' spaces of Ghent

    Get PDF
    The focus of this chapter is on everyday spaces of African migration in the mid-sized city of Ghent. One manifestation of African spatiality is discussed in-depth in relation to its (in)visibility and publicity: an African shop located in an ordinary terraced house. With no less than 12 activities taking place in the building, the shop is rather a “public” place than solely a space of commercial transactions, although this is not signaled in very visible ways. By analyzing the modest stylistic appropriations of the façade and the significant re-arrangements of the buildings’ interior spaces that challenge more conventional usages of spaces in Ghent’s ordinary houses, this chapter puts this African shop to the fore as emblematic of how the process of materialization of transnational lifestyles and connections is always a balancing act between the visibility necessary for functioning as a (semi-)pubic place and the invisibility required to circumvent hegemonic regulatory regimes

    Peptide-Pulsed Dendritic Cells Induce the Hepatitis C Viral Epitope-Specific Responses of NaĂŻve Human T Cells

    Get PDF
    Hepatitis C virus (HCV) is a major cause of liver disease. Spontaneous resolution of infection is associated with broad, MHC class I- (CD8+) and class II-restricted (CD4+) T cell responses to multiple viral epitopes. Only 20% of patients clear infection spontaneously, however, most develop chronic disease. The response to chemotherapy varies; therapeutic vaccination offers an additional treatment strategy. To date, therapeutic vaccines have demonstrated only limited success in clinical trials. Vector-mediated vaccination with multi-epitope-expressing DNA constructs provides an improved approach. Highly-conserved, HLA-A2-restricted HCV epitopes and HLA-DRB1-restricted immunogenic consensus sequences (ICS, each composed of multiple overlapping and highly conserved epitopes) were predicted using bioinformatics tools and synthesized as peptides. HLA binding activity was determined in competitive binding assays. Immunogenicity and the ability of each peptide to stimulate naĂŻve human T cell recognition and IFN-Îł production were assessed in cultures of total PBMCs and in co-cultures composed of peptide-pulsed dendritic cells (DCs) and purified T lymphocytes, cell populations derived from normal blood donors. Essentially all predicted HLA-A2-restricted epitopes and HLA-DRB1-restricted ICS exhibited HLA binding activity and the ability to elicit immune recognition and IFN-Îł production by naĂŻve human T cells. The ability of DCs pulsed with these highly-conserved HLA-A2- and -DRB1-restricted peptides to induce naĂŻve human T cell reactivity and IFN-Îł production ex vivo demonstrates the potential efficacy of a multi-epitope-based HCV vaccine targeted to dendritic cells

    Nogo-A Expression in the Brain of Mice with Cerebral Malaria

    Get PDF
    Cerebral malaria (CM) is associated with a high rate of transient or persistent neurological sequelae. Nogo-A, a protein that is highly expressed in the endoplasmic reticulum (ER) of the mammalian central nervous system (CNS), is involved in neuronal regeneration and synaptic plasticity in the injured CNS. The current study investigates the role of Nogo-A in the course of experimental CM. C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. Brain homogenates of mice with different clinical severity levels of CM, infected animals without CM and control animals were analyzed for Nogo-A up-regulation by Western blotting and immunohistochemistry. Brain regions with Nogo-A upregulation were evaluated by transmission electron microscopy. Densitometric analysis of Western blots yielded a statistically significant upregulation of Nogo-A in mice showing moderate to severe CM. The number of neurons and oligodendrocytes positive for Nogo-A did not differ significantly between the studied groups. However, mice with severe CM showed a significantly higher number of cells with intense Nogo-A staining in the brain stem. In this region ultrastructural alterations of the ER were regularly observed. Nogo-A is upregulated during the early course of experimental CM. In the brain stem of severely affected animals increased Nogo-A expression and ultrastructural changes of the ER were observed. These data indicate a role of Nogo-A in neuronal stress response during experimental CM
    • 

    corecore