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Abstract. We present an example of the dynamical systems approach
to learning and adaptation. Our goal is to explore how both control and
learning can be embedded into a single dynamical system, rather than
having a separation between controller and learning algorithm. First,
we present our adaptive frequency Hopf oscillator, and illustrate how it
can learn the frequencies of complex rhythmic input signals. Then, we
present a controller based on these adaptive oscillators applied to the
control of a simulated 4-degrees-of-freedom spring-mass hopper. By the
appropriate design of the couplings between the adaptive oscillators and
the mechanical system, the controller adapts to the mechanical properties
of the hopper, in particular its resonant frequency. As a result, hopping
is initiated and locomotion similar to the bound emerges. Interestingly,
efficient locomotion is achieved without explicit inter-limb coupling, i.e.
the only effective inter-limb coupling is established via the mechanical
system and the environment. Furthermore, the self-organization process
leads to forward locomotion which is optimal with respect to the veloc-
ity/power ratio.

1 Introduction

Nonlinear dynamical systems are a promising approach both for studying adap-
tive mechanisms in Nature and for devising controllers for robots with multiple
degrees of freedom. Indeed, nonlinear dynamical systems can present interesting
properties such as attractor behavior which can be very useful for control, e.g.
the generation of rhythmic signals for the control of locomotion. However, con-
trollers for engineering applications usually need to be tailor-made and tuned for
each application. This is in contrast to Nature where multiple adaptive mech-
anisms take place to adjust the controller (the central nervous system) to the
body shape, and vice-versa. For the control of locomotion for instance, there are
mechanisms to adapt the locomotor networks to changing body properties (e.g.
due to growth, aging, and/or lesions) during the life time of an individual, and
this greatly increases its survival probability.

In order to endow robots with similar capabilities, we are investigating the
possibility to construct adaptive controllers with nonlinear dynamical systems.
This is achieved by letting the parameters of the system change in function
of the systems behavior, and, therefore, also in function of external influences.
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Thus, we aim at designing systems in which learning is an integral part of the
dynamical system, not a separate process, in contrast to many approaches in
artificial neural networks and other fields.

In an earlier study [4] we presented an adaptive frequency oscillator as a
controller for a simple locomotion system. The motivation to use an adaptive
frequency oscillator was to deploy a controller that is able to adapt to “body”-
properties, i.e. properties of the mechanical system. In this case the body prop-
erty to be adapted to is the resonant frequency of the mechanical system. The
presented approach is especially useful when the mechanical properties of the
body are not known or changing. In such cases, properties such as the resonant
frequencies and similar are not directly accessible, but have to be inferred by
some sort of measurement.

In this paper we pursue further the idea of the adaptive frequency oscillator
used as an adaptive locomotion controller (cf. [4]). First, we will present how
the adaptive frequency oscillator can learn the frequencies of arbitrary rhythmic
input signals. The main interesting features of the adaptive oscillator are (1) that
it can learn the frequencies of complex and noisy signals, (2) that it does not
require any pre-processing of the signal, and (3) that the learning mechanism is
an integral part of the dynamical system.

Then, we will present a more complex and realistic example of a robot that is
capable of hopping, namely a 4-DOF spring-mass hopper with an adaptive con-
troller based on the adaptive frequency oscillators. Spring-mass systems have
been widely used to study fundamental aspects of locomotion [3, 11] and several
robots based on this concept have been presented [17, 8, 5]. In [12] the mechanical
stability of spring-mass systems is discussed. Recently, robots with legs including
elastic elements have been presented [10, 13, 14]. Coupled oscillators have been
extensively studied for locomotion control [7, 20, 19, 10]. However, usually the
structure and parameterization of these controllers are fixed by heuristics or are
adapted with algorithms which are not formulated in the language of dynamical
systems. One exception is [16] where learning is included in the dynamical sys-
tem. The results are, however, for many coupled phase oscillators and no direct
application example is given. Another exception is [6] where an adaptation of
the stride period is investigated, with a discrete dynamical system.

In our contribution, thanks to the adaptive mechanisms, the controller tunes
itself to the mechanical properties of the body, and generates efficient locomotion.
As we will see, the system, albeit its simplicity, shows a rich and complicated
emergent behavior. In particular, efficient gait patterns are evolved in a self-
organized fashion, and are quickly adjusted when body properties are changed.
Interestingly, the emergent gaits are optimal with respect to the velocity/power
ratio.

2 Adaptive Frequency Oscillators

In this section we introduce our adaptive frequency Hopf oscillator, and will
show its behavior under non-harmonic driving conditions. The adaptive fre-
quency Hopf oscillator is described by the following set of differential equations.
We introduce it in the Cartesian coordinate system (Eqs. 1–3) as this allows an
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intuitive understanding of the additive coupling. In order to understand conver-
gence and locking behavior it is also convenient to look at the oscillator in its
phase, radius coordinate system which in the case of the Hopf oscillator, having
a harmonic limit cycle, coincides with the representation in polar coordinates
(Eqs. 4–6).

ẋh = (µh − r2)xh − ωhyh + cFx(t) (1)

ẏh = (µh − r2)yh + ωhxh (2)

ω̇h = − 1

τh

y

r
cFx(t) (3)

ṙh = (µh − r2)r + cos(φh)cFx(t) (4)

φ̇h = ωh − 1

r
sin(φh)cFx(t) (5)

ω̇h = − 1

τh
sinφhcFx(t) (6)

where xh, yh are the states of the oscillator, ωh is its intrinsic frequency, r =√
x2
h + y2

h and Fx(t) is a perturbing force (the subscript h distinguishes the
variables of the Hopf oscillator from variables in the mechanical system). If
Fx(t) = 0, this system shows a structurally stable, harmonic limit cycle with
radius r =

√
µ for µ > 0. It can be shown [18] that such an oscillator adapts to

frequencies present in a rhythmic input signal. In the case of a harmonic signal
Fx(t) = sin(ωF t) this means ωh is evolving toward ωF . If the input signal has
many frequency components (e.g. square signal) the final value of ωh is depen-
dent on the initial condition ωh(0). The size and boundaries of the basins of
attraction are proportional to the energy content of the frequency component
constituting the basin of attraction, see [18] for further discussion of the con-
vergence properties. Our adaptive frequency oscillators have many nice features
which makes them useful for applications and a good example for the dynamical
systems approach to learning: 1) no separation of learning substrate and learn-
ing algorithm, 2) learning is embedded into the dynamics, 3) no preprocessing
needed (e.g. no extraction of phase, FFT, nor setting of time windows), 4) work
well with noisy signals, 5) robust against perturbation, 6) they possess a resonant
frequency and amplification properties.

Now we shall present a few representative results from numerical integration,
to show the correct convergence of the adaptive frequency oscillator. First, we
show the convergence for a harmonic perturbation Fx(t) = sin(ωF t). As we are
interested to show that ωh → ωF , we use ωd = ωh − ωF and φd = φh − φF
to plot the results. For all simulations τ = 1, c = 0.1, ωd(0) = 1, φd(0) = 0
and rh(0) = 1. We present results of the integration of the system Eqs. 4-
6. In Fig. 1 the behavior of variables φd and ωd is depicted. In Fig. 1(b), we
present the phase plot of the system for the harmonic perturbation. Clearly
visible is that the system is evolving towards a limit set. The limit set corre-
sponds to the phase locked case φd ≤ const and the frequency has adapted
so that ωd ≈ 0. Since we want to be sure that the convergence works for a
wide range of input signals (as in the case when the oscillator is coupled with
the mechanical system) we show then results with general nonharmonic per-
turbation by general TF -periodic functions f(t, ωF ), TF = 2π

ωF
(Fig. 2). The

system was subjected to the following driving signals: (a) Square Pulse Signal
f(t, ωF ) = rect(ωF t), (b) Sawtooth f(t, ωF ) = st(ωF t), (c) Quadratic Chirp
f(t, ωF ) = cos(ωct),ωc = ωF (1 + 1

2 ( t
1000 )2), (d) Signal consisting of two non-
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commensurate frequency components, f(t, ωF ) = 1
2

[
cos(ωF t) + cos(

√
2

2 ωF t)
]
,

(e) Chaotic signal from the Rössler system. There are differences in the conver-
gence speed and in the limit set. Yet, in all cases the oscillators converge to the
appropriate frequencies. Very interesting cases are signals with 2 or more pro-
nounced frequency components (such as signals (a),(b) and (d)). In this case the
initial condition ωd(0) determines to which frequency the oscillator adapts (cf
Fig. 2(d)). The size of the basin of attraction is proportional to the ratio of en-
ergy of the corresponding frequency component to the total energy of the signal
(due to the lack of space the data is not shown, but can be found in [18]). These
simulations show that the adaptation mechanism works despite complex input
signals (convergence under broad driving conditions). In the next section we will
explore how these interesting properties can be applied to control a mechanical
system.

3 The adaptive active spring-mass hopper

In this section we will present the spring-mass hopper. We will first present the
mechanical structure and then focus on the adaptive controller. As a general
idea we will exploit the bandpass, and amplification/attenuation properties of
both the mechanical system and the adaptive frequency Hopf oscillator.

Since our main interest is the adaptation in the controllers, we do not dis-
cuss the problem of mechanical stability of the locomotion. We avoid stability
problems by an appropriate mechanical structure (wide feet, low center of mass),
thus the feet of the robot are wide enough to ensure stability in lateral direc-
tion, i.e. the robot is essentially working in a vertical (the “sagittal”) plane.
The spring-mass hopper consists of 5 rigid bodies joined by rotational and linear
joints (cf. Fig. 3). A prolonged cubic body is supported by two legs. The two legs
are identical in their setup. A leg is made of an upper part Mu and a lower part
Ml which are joined by a spring-mass system and a linear joint. The function of
the linear joint is just to ensure the alignment of the body axes and is otherwise
passive. The spring between the two parts of the leg is an activated spring of the
form Ff = −kdl, where k = fk(t) and dl is the distance between Mu and Ml.
The damper is an ideal viscous damping element of the form Fd = −cdvd, where
cd is the damping constant and vd = vu − vl, is the relative velocity of Mu and
Ml. The rotational joints between the upper part of the leg Mu and the body
Mb are activated by a servo mechanism which ensures that the desired velocity
vref is always maintained (cf. [2]). The choice of the spring activation function
fk(t) and the choice of the desired velocity vref = fv(t) will be discussed below,
when the coupling between controller and mechanical system is introduced. Due
to the spring-mass property of the legs the contraction mechanism possesses a
resonant frequency ωF

1. In other words, this type of mechanical system can be
interpreted as a band-pass filter with the pass band around ωF . This fact is im-

1 Note, that the leg can also be considered as a pendulum and thus possesses a second
resonant frequency. We will not focus on this intrinsic dynamics in this article.
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Fig. 1. (a) Integration of the System Eqs. 1-3 (b) corresponding phase plot, in which
the frequency adaptation and the phase locking can be seen.
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Fig. 2. On the top left panel the nonharmonic driving signals are presented. (a) Square
pulse (b) Sawtooth (c) Chirp (Note that this is illustrative only since the change in
frequency takes much longer as illustrated.) (d) Signal with two non-commensurate
frequencies (e) Output of the Rössler system. – We depict representative results on
the evolution of ωd

ωF
vs. time. The dashed line indicates the base frequency ωF of the

driving signals. In (d) we show in a representative example how the system can evolve to
different frequency components of the driving signal depending on the initial condition
ωd(0).
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Default parameter values

parameter value parameter value

µh 0.0001 mb [kg] 0.35
τh [s] 1 mu[kg] 0.09

c [s m−1] 0.5 ml [kg] 0.0056

a [N m−1] 10 cd [N m−1 s] 0.7

av [rad s−1] 10 k0 [N m−1] 40

(c)

Fig. 3. (a) The mechanical structure of the spring-mass hopper. The trunk is made up
of a rigid body Mb on which two legs are attached by rotational joints. The lower part
of the leg is attached by a spring-mass system SD. The lower part consist of a small
rigid body. The length of the body is 0.5m (b) The coupling structure of the controller
and the mechanical system used for the spring-mass hopper. The upper Hopf oscillator
is used for the activation of the fore leg and the lower feedback loop for the hind
leg. (c) This table presents the parameters that have been used for the simulations,
unless otherwise noted. Note that this parameters can be chosen from a wide range
and the results do (qualitatively) to a large extent not depend on the exact values of
the parameters. Bottom row: Snapshots of the movement sequence of the spring-mass
hopper when the frequency is adapted, i.e. steady state behavior (cf also movie [1]).

portant for the controller to be able to activate the body [4]. This will be further
discussed towards the end of this section.

The controller of the leg consists of an adaptive frequency Hopf oscillator
(Eqs. 1–3), which is perturbed by the activity of the mechanical system (see
below for the exact form). The Hopf oscillator acts as a frequency selective
amplifier [9], i.e. frequency components of Fx(t) that are close to ωh are amplified.
Especially the setting µh = 0 is special in the sense that the system undergoes
a fundamental change at that point: For µh < 0 the system exhibits a stable
fixed point at z = 0, whereas for µh > 0 a stable limit cycle occurs with radius
r =
√
µh. This phenomenon is known as a Hopf bifurcation. At µh = 0, there

is no signal oscillating at ωh weak enough not to get amplified by the Hopf
oscillator. Therefore, for that setting the Hopf oscillator can be considered an
ideal amplifier. We use a setting µh ≈ 0. The coupling from the oscillator to
the mechanics is established via the spring constants k = fk(t) and desired
angular joint velocity vref = fv(t). The oscillator therefore drives both a linear
actuator (the spring in the leg) and a rotational actuator (the servo in the hip).
The function for the spring constant is chosen as k = k0 + axhr , where k0 is
a constant and a a coupling constant. The function for the desired velocity
is chosen as vref = avyh where av is a coupling constant. The choice of this
function, which introduces a π

2 phase lag between the spring activity and the
joint angular velocity is based on the observation of a phase lag between hip and
knee joints in locomoting humans and animals. The coupling from the mechanical
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system to the Hopf oscillator is established via the relative velocity between
upper and lower part of a limb as follows Fx(t) = cvd Fig. 3 illustrates the
coupling scheme. Thus, by the coupling scheme a feedback loop is established
between the oscillator and the mechanical system. If the resonant frequencies of
mechanical system and the Hopf frequency match, i.e. ωF ≈ ωh, an increase of
the activity in the system is expected due to the amplifying properties of the Hopf
oscillators (cf. [4]). Instead of tuning the controller manually to the appropriate
frequency, we let the controller adapt its frequency. In order to achieve this
adaptation, we introduce an influence of the mechanical perturbation to the
evolution of ωh via an appropriate choice of Fω.

Adaptive Frequency The coupling of the perturbation of the mechanical sys-
tem to the evolution of ωh, allows the controller to adapt to the mechanical
system and is equivalent to the perturbation arriving at the oscillator projected
on the tangential direction of the limit cycle multiplied with an adaptation rate
constant: ω̇h = − 1

τh
cvd

yh
r = − 1

τh
Fx(t)yhr . This is the same coupling as used for

the adaptive frequency Hopf oscillator before.

4 Simulation results

The spring-mass hopper simulation was implemented in Webots, a robot simu-
lator with articulated-body dynamics [15]. In Table 3 we present the parameters
for the spring-mass hopper that were used for the simulations unless otherwise
noted. Note that this parameters can be chosen from a wide range and the
qualitative results do to a large extent not depend on the exact values of the
parameters.

We first show how the adaptation of the Hopf frequency ωh leads to an
excitation of the system and hopping is initiated. To avoid influence of the hip
movements on the generated movement the joints are, in this case, fixed at an
angle of zero degrees and av = 0, i.e. the hopper is just able to hop in place. Thus,
the experiment verifies that the frequency adaptation works. As can be seen in
Fig. 4, indeed, due to the adaptation the feet start to lift from the ground. In a
next experiment the coupling from the oscillators to the rotational hip joints is
set to its default value (av = 10). Due to the activation of the hip joints complex
movements emerge. The diversity and self-organization of the movement depends
on many factors, therefore in this article we will show preliminary results on the
most typical locomotion pattern that was observed. This pattern resembles the
bound. The movement sequence of the hopping movement is shown in a series
of representative snapshots in Fig. 3. In Fig. 5, the adaptation, feet elevation
and displacement of the body is presented. The average achieved velocity in
steady state for mb = 0.35 kg is about 0.53 ms−1 (approx. one body length per
second). The next experiment shows that the controller correctly tracks changes
in the mechanical system. To demonstrate this adaptation capability the mass
of the body Mb is changed from mb = 0.2 kg to mb = 0.4 kg at time t = 40 s. The
results are presented in Fig. 6. As the mass is changed, the controller immediately
starts to adapt and settles after about 50 s to the new resonant frequency. When
looking at the displacement of the body xb it is evident that the change in the
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Fig. 4. Simulation results of the spring-
mass hopper when the rotational joints
are not activated. a) Evolution of the
intrinsic frequencies of the Hopf oscilla-
tors ωh. Note that the frequencies of both
oscillators nearly coincide and therefore
only one seems visible. b) Fore limb foot
elevation. c) Hind limb foot elevation. The
adaptation of the frequency is clearly vis-
ible and as can be seen in the feet ele-
vation measurements the activity of the
system is increased as hopping starts at
around 20 s (arrow). The dashed line de-
picts the theoretical resonant frequency of
the spring-mass system when it would not
leave the ground. Due to the lift-off of the
feet the real resonant frequency is smaller
than the calculated value.
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which increases the adaptation speed be-
fore the system settles to steady state be-
havior.
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ity of the controller when the mass is
changed. At t = 40 s (dashed line) the
mass of the body Mb is changed from
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mass slows down the system for a moment but due to the adaptation the velocity
is increased again (cf also movies of the experiments [1]). The average velocity
before change of mass is about 0.68 ms−1. After the change, when reached steady
state behavior again, the velocity is in average 0.49 ms−1.

In a last experiment we investigate the efficiency of the hopper for forward
locomotion. We define the efficiency as the ratio ρ =

vx,b
PΣ

i.e. the ratio between

average forward velocity vx,b of the body and the average power PΣ consumed
by all activated joints. In order to assure steady state measurements, the learning
is disabled (τh = 0) and the experiment is repeated for different Hopf frequencies
ωh = [10, 10.5 . . . , 20]. The transient behavior is removed before the efficiency
is measured. In Fig. 7, the results of the efficiency measurements are presented.
The line indicates the frequency to which the system evolves if τ 6= 0, thus it is
clear that the adaptive frequency process finds the optimal efficiency. It is worth
noting, that this optimum in efficiency does not correspond to the maximum of
power consumption nor the maximum of velocity (data not shown). This is in
line with the observations on animals.

5 Discussion

When introducing adaptation into a system it is important to investigate the
convergence properties of the adaptation mechanism. From the mathematical
point of view adaptivity on one hand and convergence and stability on the other
hand are somewhat opposing requirements. We have shown, that the adaptive
frequency oscillator can be driven with general, nonharmonic signals and still
adapts to the frequency of the signal.

We have presented a 4-DOF spring-mass hopper with a controller based on
adaptive frequency Hopf oscillators which adapts to mechanical properties of
the hopper. This adaptation has the effect that the spring-mass system starts to
resonate and initiates hopping locomotion, similar to the bound. The adaptation
is embedded into the dynamics of the system and no pre-processing of sensory
data is needed. The system shows fast adaptation to body properties.

The results presented in this paper show that with a simple control scheme,
it is possible to initiate complex movements and to adapt to the body properties
which are important for this movement. In order for this simple scheme to be
successful it is important that the controller exploits the natural dynamics of the
body. This is in line with observations in nature, where the controllers are found
to be complementary to the bodies they control. In fact the adaptation can be
considered a type of Hebbian learning as it maximizes the correlation between the
signal perturbing the oscillator and the activity of the oscillator. Interestingly,
there is no direct coupling between the controllers for the hind and the fore limb.
The only coupling between the two controllers is via the mechanical structure
and the environment. Nevertheless, an efficient inter-limb coordination emerges
and a fast, efficency-optimal locomotion is established. This is interesting as
there is no explicit notion of velocity in the system, so it is surprising that the
system optimized on velocity/power efficiency.
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Immediate possible applications of such adaptive nonlinear dynamical sys-
tems are e.g. modular robotics, micro robots, robots which are difficult to model,
and adaptive Central Pattern Generators (CPG) for legged locomotion. Further-
more, it will be interesting to explore the use of such adaptive systems in other
fields such as in Physics, Biology and Cognitive Sciences, where oscillators are
widely used model systems.
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