315 research outputs found
Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.Peer reviewe
Comparison between Bipolar Hemiarthroplasty and Total Hip Arthroplasty for Unstable Intertrochanteric Fractures in Elderly Osteoporotic Patients
The present study was conducted to compare bipolar hemiarthroplasty (BA) with total hip arthroplasty (THA) in treatment of unstable intertrochanteric fractures in elderly osteoporotic patients. The THA group included 14 males and 26 females with a mean age of 73.4 years, and the BA group included 27 males and 45 females with a mean age of 76.5 years. Significant difference existed between the two groups in operation time, blood loss, transfusion volume and cost of hospitalization, while no remarkable difference was identified in hospitalization period, general complications, joint function, pain, rate of revision and mortality. No dislocation was observed in BA group while 3 occurred in THA group. The results indicated that for unstable intertrochanteric fractures in elderly osteoporotic patients, BA seems to be a better or more reasonable choice compared with THA for the reason of less blood loss, shorter operation time, lower cost and no dislocation
The same ELA class II risk factors confer equine insect bite hypersensitivity in two distinct populations
Insect bite hypersensitivity (IBH) is a chronic allergic dermatitis common in horses. Affected horses mainly react against antigens present in the saliva from the biting midges, Culicoides ssp, and occasionally black flies, Simulium ssp. Because of this insect dependency, the disease is clearly seasonal and prevalence varies between geographical locations. For two distinct horse breeds, we genotyped four microsatellite markers positioned within the MHC class II region and sequenced the highly polymorphic exons two from DRA and DRB3, respectively. Initially, 94 IBH-affected and 93 unaffected Swedish born Icelandic horses were tested for genetic association. These horses had previously been genotyped on the Illumina Equine SNP50 BeadChip, which made it possible to ensure that our study did not suffer from the effects of stratification. The second population consisted of 106 unaffected and 80 IBH-affected Exmoor ponies. We show that variants in the MHC class II region are associated with disease susceptibility (praw = 2.34 × 10−5), with the same allele (COR112:274) associated in two separate populations. In addition, we combined microsatellite and sequencing data in order to investigate the pattern of homozygosity and show that homozygosity across the entire MHC class II region is associated with a higher risk of developing IBH (p = 0.0013). To our knowledge this is the first time in any atopic dermatitis suffering species, including man, where the same risk allele has been identified in two distinct populations
Dissection of the Inflammatory Bowel Disease Transcriptome Using Genome-Wide cDNA Microarrays
BACKGROUND: The differential pathophysiologic mechanisms that trigger and maintain the two forms of inflammatory bowel disease (IBD), Crohn disease (CD), and ulcerative colitis (UC) are only partially understood. cDNA microarrays can be used to decipher gene regulation events at a genome-wide level and to identify novel unknown genes that might be involved in perpetuating inflammatory disease progression. METHODS AND FINDINGS: High-density cDNA microarrays representing 33,792 UniGene clusters were prepared. Biopsies were taken from the sigmoid colon of normal controls (n = 11), CD patients (n = 10) and UC patients (n = 10). (33)P-radiolabeled cDNA from purified poly(A)(+) RNA extracted from biopsies (unpooled) was hybridized to the arrays. We identified 500 and 272 transcripts differentially regulated in CD and UC, respectively. Interesting hits were independently verified by real-time PCR in a second sample of 100 individuals, and immunohistochemistry was used for exemplary localization. The main findings point to novel molecules important in abnormal immune regulation and the highly disturbed cell biology of colonic epithelial cells in IBD pathogenesis, e.g., CYLD (cylindromatosis, turban tumor syndrome) and CDH11 (cadherin 11, type 2). By the nature of the array setup, many of the genes identified were to our knowledge previously uncharacterized, and prediction of the putative function of a subsection of these genes indicate that some could be involved in early events in disease pathophysiology. CONCLUSION: A comprehensive set of candidate genes not previously associated with IBD was revealed, which underlines the polygenic and complex nature of the disease. It points out substantial differences in pathophysiology between CD and UC. The multiple unknown genes identified may stimulate new research in the fields of barrier mechanisms and cell signalling in the context of IBD, and ultimately new therapeutic approaches
Development of lung function in very low birth weight infants with or without bronchopulmonary dysplasia: Longitudinal assessment during the first 15 months of corrected age
<p>Abstract</p> <p>Background</p> <p>Very low birth weight (VLBW) infants (< 1,500 g) with bronchopulmonary dysplasia (BPD) develop lung damage caused by mechanical ventilation and maturational arrest. We compared functional lung development after discharge from hospital between VLBW infants with and without BPD.</p> <p>Methods</p> <p>Comprehensive lung function assessment was performed at about 50, 70, and 100 weeks of postmenstrual age in 55 sedated VLBW infants (29 with former BPD [O<sub>2 </sub>supplementation was given at 36 weeks of gestational age] and 26 VLBW infants without BPD [controls]). Mean gestational age (26 vs. 29 weeks), birth weight (815 g vs. 1,125 g), and the proportion of infants requiring mechanical ventilation for ≥7 d (55% vs. 8%), differed significantly between BPD infants and controls.</p> <p>Results</p> <p>Both body weight and length, determined over time, were persistently lower in former BPD infants compared to controls, but no significant between-group differences were noted in respiratory rate, respiratory or airway resistance, functional residual capacity as determined by body plethysmography (FRC<sub>pleth</sub>), maximal expiratory flow at the FRC (V'max <sub>FRC</sub>), or blood gas (pO<sub>2</sub>, pCO<sub>2</sub>) levels. Tidal volume, minute ventilation, respiratory compliance, and FRC determined by SF6 multiple breath washout (representing the lung volume in actual communication with the airways) were significantly lower in former BPD infants compared to controls. However, these differences became non-significant after normalization to body weight.</p> <p>Conclusions</p> <p>Although somatic growth and the development of some lung functional parameters lag in former BPD infants, the lung function of such infants appears to develop in line with that of non-BPD infants when a body weight correction is applied. Longitudinal lung function testing of preterm infants after discharge from hospital may help to identify former BPD infants at risk of incomplete recovery of respiratory function; such infants are at risk of later respiratory problems.</p
Accumulation of mitochondrial DNA mutation with colorectal carcinogenesis in ulcerative colitis
We recently reported that oxidative stress elicited by chronic inflammation increases the mutation of mitochondrial DNA (mtDNA) and possibly correlates with precancerous status. Since severe oxidative stress is elicited in the colorectal mucosa of individuals with ulcerative colitis (UC), the possible occurrence of an mtDNA mutation in the inflammatory colorectal mucosa and colitic cancer was investigated. Colorectal mucosal specimens were obtained from individuals with UC with and without colitic cancer and from control subjects. The frequency of mtDNA mutations was higher in colorectal mucosal specimens from patients with UC than that from control subjects. The levels of 8-hydroxy-2′-deoxyguanosine, a DNA adduct by reactive oxygen species, were significantly higher in UC than in control. Specimens from patients with colitic cancer contained a significantly higher number of mtDNA mutations. The present observations suggest that the injury followed by the regeneration of colorectal mucosal cells associated with chronic inflammation causes accumulation of mtDNA mutations. The increased instability of genes, including those on the mtDNA, is consistent with the high and multicentric incidence of colorectal cancer in individuals with UC. Thus, analysis of mtDNA could provide a new criterion for the therapeutic evaluation, and may be useful for the prediction of risk of carcinogenesis
Identifying Molecular Effects of Diet through Systems Biology: Influence of Herring Diet on Sterol Metabolism and Protein Turnover in Mice
BACKGROUND: Changes in lifestyle have resulted in an epidemic development of obesity-related diseases that challenge the healthcare systems worldwide. To develop strategies to tackle this problem the focus is on diet to prevent the development of obesity-associated diseases such as cardiovascular disease (CVD). This will require methods for linking nutrient intake with specific metabolic processes in different tissues. METHODOLOGY/PRINCIPAL FINDING: Low-density lipoprotein receptor-deficient (Ldlr -/-) mice were fed a high fat/high sugar diet to mimic a westernized diet, being a major reason for development of obesity and atherosclerosis. The diets were supplemented with either beef or herring, and matched in macronutrient contents. Body composition, plasma lipids and aortic lesion areas were measured. Transcriptomes of metabolically important tissues, e.g. liver, muscle and adipose tissue were analyzed by an integrated approach with metabolic networks to directly map the metabolic effects of diet in these different tissues. Our analysis revealed a reduction in sterol metabolism and protein turnover at the transcriptional level in herring-fed mice. CONCLUSION: This study shows that an integrated analysis of transcriptome data using metabolic networks resulted in the identification of signature pathways. This could not have been achieved using standard clustering methods. In particular, this systems biology analysis could enrich the information content of biomedical or nutritional data where subtle changes in several tissues together affects body metabolism or disease progression. This could be applied to improve diets for subjects exposed to health risks associated with obesity
Subcellular distributions of calcium/calmodulin-stimulated and guanine nucleotide-regulated adenylate cyclase activities in the cerebral cortex
The subcellular distribution of Ca 2+ /calmodulin-stimulated adenylate cyclase activity was studied in comparison with that of guanine nucleotide-stimulated cyclase activity. The distributions of these activities were similar among the crude fractions but differed among the purified subsynaptosomal fractions. The specific activity of Ca 2+ /calmodulin-stimulated cyclase was highest in a light synaptic membrane fraction, which has few, if any, postsynaptic densities, whereas that of guanine nucleotide-stimulated cyclase was highest in a heavier synaptic membrane fraction rich in postsynaptic densities. These results suggest that the Ca 2+ /calmodulin-stimulated cyclase has, at least in part, a different cellular or subcellular location than the guanine nucleotide-stimulated cyclase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45402/1/11064_2004_Article_BF00965018.pd
- …