361 research outputs found

    Global search algorithm for optimal control

    Get PDF
    Random-search algorithm employs local and global properties to solve two-point boundary value problem in Pontryagin maximum principle for either fixed or variable end-time problems. Mixed boundary value problem is transformed to an initial value problem. Mapping between initial and terminal values utilizes hybrid computer

    DY determinants, possibly associated with novel class II molecules, stimulate autoreactive CD4+ T cells with suppressive activity

    Get PDF
    A set of T cell clones (TCC) isolated from HLA-DR-, Dw-, DQ-matched allogeneic MLCs was found to proliferate autonomously when stimulated with cells carrying a wide range of class I or II specificities. This apparently unrestricted proliferation was relatively weak, and only low levels of IL-2 were present in the supernatants of stimulated cells. Autologous as well as allogeneic PBMC and B lymphoblastoid cell lines (B-LCL) were capable of stimulating such clones, which were also restimulated by suppressive, but not by helper, TCC. Moreover, such clones displayed the unusual property of autostimulation. mAb inhibition experiments suggested that class II- or class II-restricted antigens were involved in stimulation. Thus, certain "broad" mAbs (TU39, SG520) reacting with multiple locus products inhibited activation of these reagents, but none of those reacting more specifically with DR (TU34, TU37, L243, Q2/70, SG157), DQ (TU22, SPV- L3, Leu 10), or DP (B7/21), or mixtures of these mAbs, were able to do so. Evidence from sequential immunoprecipitation experiments suggested that mAb TU39 bound class II-like molecules other than DR, DQ, and DP on TCC and B-LCL, and it is therefore proposed that such putative novel class II-like molecules may carry the stimulating determinants for these autoreactive clones. DY-reactive clones lacked helper activity for B cells but mediated potent suppressive activity on T cell proliferative responses that was not restricted by the HLA type of the responding cells. Suppressive activity was induced in normal PBMC by such clones, as well as by independent suppressive clones, which was also inhibited only by mAb TU39. These findings lead to the proposal that DY-reactive autostimulatory cells may constitute a self- maintaining suppressive circuit, the level of activity of which would be regulated primarily by the availability of IL-2 in the microenvironmen

    Genome-Wide Identification and Analysis of Grape Aldehyde Dehydrogenase (ALDH) Gene Superfamily

    Get PDF
    The completion of the grape genome sequencing project has paved the way for novel gene discovery and functional analysis. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD(P)(+)-dependent enzymes that catalyze the irreversible oxidation of a wide range of endogenous and exogenous aromatic and aliphatic aldehydes. Although ALDHs have been systematically investigated in several plant species including Arabidopsis and rice, our knowledge concerning the ALDH genes, their evolutionary relationship and expression patterns in grape has been limited.A total of 23 ALDH genes were identified in the grape genome and grouped into ten families according to the unified nomenclature system developed by the ALDH Gene Nomenclature Committee (AGNC). Members within the same grape ALDH families possess nearly identical exon-intron structures. Evolutionary analysis indicates that both segmental and tandem duplication events have contributed significantly to the expansion of grape ALDH genes. Phylogenetic analysis of ALDH protein sequences from seven plant species indicates that grape ALDHs are more closely related to those of Arabidopsis. In addition, synteny analysis between grape and Arabidopsis shows that homologs of a number of grape ALDHs are found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the speciation of the grape and Arabidopsis. Microarray gene expression analysis revealed large number of grape ALDH genes responsive to drought or salt stress. Furthermore, we found a number of ALDH genes showed significantly changed expressions in responses to infection with different pathogens and during grape berry development, suggesting novel roles of ALDH genes in plant-pathogen interactions and berry development.The genome-wide identification, evolutionary and expression analysis of grape ALDH genes should facilitate research in this gene family and provide new insights regarding their evolution history and functional roles in plant stress tolerance

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Large-scale comparative phenotypic and genomic analyses reveal ecological preferences of Shewanella species and identify metabolic pathways conserved at the genus level

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 77 (2011): 5352-5360, doi:10.1128/AEM.00097-11.The use of comparative genomics among different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at the time. In this study, we provide a high throughput alternative to this limiting step by coupling comparative genomics to phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed. A number of previously unknown gene products were predicted to be part of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high throughput phenotype analysis provided insights into niche specialization within the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, from the deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N-sources they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects.The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract numbers DE-AC02-05CH11231 and DE-FG02-08ER64511

    Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present study was to explore the occurrence of fibrocytes in tissue and to investigate whether the appearance of fibrocytes may be linked to structural changes of the parenchyme and vasculature in the lungs of patients with obliterative bronchiolitis (OB) following lung or bone marrow transplantation.</p> <p>Methods</p> <p>Identification of parenchyme, vasculature, and fibrocytes was done by histological methods in lung tissue from bone marrow or lung-transplanted patients with obliterative bronchiolitis, and from controls.</p> <p>Results</p> <p>The transplanted patients had significantly higher amounts of tissue in the alveolar parenchyme (46.5 ± 17.6%) than the controls (21.7 ± 7.6%) (p < 0.05). The patients also had significantly increased numbers of fibrocytes identified by CXCR4/prolyl4-hydroxylase, CD45R0/prolyl4-hydroxylase, and CD34/prolyl4-hydroxylase compared to the controls (p < 0.01). There was a correlation between the number of fibrocytes and the area of alveolar parenchyma; CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.05) and CD34/prolyl 4-hydroxylase (p < 0.05). In the pulmonary vessels, there was an increase in the endothelial layer in patients (0.31 ± 0.13%) relative to the controls (0.037 ± 0.02%) (p < 0.01). There was a significant correlation between the number of fibrocytes and the total area of the endothelial layer CXCR4/prolyl 4-hydroxylase (p < 0.001), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01). The percent areas of the lumen of the vessels were significant (p < 0.001) enlarged in the patient with OB compared to the controls. There was also a correlation between total area of the lumen and number of fibrocytes, CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01).</p> <p>Conclusion</p> <p>Our results indicate that fibrocytes are associated with pathological remodelling processes in patients with OB and that tissue fibrocytes might be a useful biomarker in these processes.</p

    The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaptation to Copper-Excess Stress

    Get PDF
    Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu2+ was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress
    corecore