443 research outputs found
A CVD diamond detector for (n,alpha) cross section measurements
Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceIn astrophysics, the determination of the optical alpha-nucleus potential for low alpha-particle energies, crucial in understanding the origin of the stable isotopes, has turned out to be a challenge. Theory still cannot predict the optical potentials required for the calculation of the astrophysical reaction rates in the Hauser-Feshbach statistical model and there is scant experimental information on reactions with alpha particles at the relevant astrophysical energies. Measurements of (n,alpha) cross-sections offer a good opportunity to study the alpha channel. At the n_TOF experiment at CERN, a prototype detector, based on the chemical vapor deposition (CVD) diamond technology, has been recently developed for (n,alpha) measurements. A reference measurement of the 10B(n,alpha)7Li reaction was performed in 2011 at n_TOF as a feasibility study for this detector type. The results of this measurement and an outline for future experiments are presented here
Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV
The neutron capture cross section of 204Pb has been measured at the CERN
n_TOF installation with high resolution in the energy range from 1 eV to 440
keV. An R-matrix analysis of the resolved resonance region, between 1 eV and
100 keV, was carried out using the SAMMY code. In the interval between 100 keV
and 440 keV we report the average capture cross section. The background in the
entire neutron energy range could be reliably determined from the measurement
of a 208Pb sample. Other systematic effects in this measurement could be
investigated and precisely corrected by means of detailed Monte Carlo
simulations. We obtain a Maxwellian average capture cross section for 204Pb at
kT=30 keV of 79(3) mb, in agreement with previous experiments. However our
cross section at kT=5 keV is about 35% larger than the values reported so far.
The implications of the new cross section for the s-process abundance
contributions in the Pb/Bi region are discussed.Comment: 8 pages, 3 figures, article submitted to Phys. Rev.
New measurement of neutron capture resonances of 209Bi
The neutron capture cross section of Bi209 has been measured at the CERN n
TOF facility by employing the pulse-height-weighting technique. Improvements
over previous measurements are mainly because of an optimized detection system,
which led to a practically negligible neutron sensitivity. Additional
experimental sources of systematic error, such as the electronic threshold in
the detectors, summing of gamma-rays, internal electron conversion, and the
isomeric state in bismuth, have been taken into account. Gamma-ray absorption
effects inside the sample have been corrected by employing a nonpolynomial
weighting function. Because Bi209 is the last stable isotope in the reaction
path of the stellar s-process, the Maxwellian averaged capture cross section is
important for the recycling of the reaction flow by alpha-decays. In the
relevant stellar range of thermal energies between kT=5 and 8 keV our new
capture rate is about 16% higher than the presently accepted value used for
nucleosynthesis calculations. At this low temperature an important part of the
heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He
shells of low mass, thermally pulsing asymptotic giant branch stars. With the
improved set of cross sections we obtain an s-process fraction of 19(3)% of the
solar bismuth abundance, resulting in an r-process residual of 81(3)%. The
present (n,gamma) cross-section measurement is also of relevance for the design
of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.
Resonance capture cross section of 207Pb
The radiative neutron capture cross section of 207Pb has been measured at the
CERN neutron time of flight installation n_TOF using the pulse height weighting
technique in the resolved energy region. The measurement has been performed
with an optimized setup of two C6D6 scintillation detectors, which allowed us
to reduce scattered neutron backgrounds down to a negligible level. Resonance
parameters and radiative kernels have been determined for 16 resonances by
means of an R-matrix analysis in the neutron energy range from 3 keV to 320
keV. Good agreement with previous measurements was found at low neutron
energies, whereas substantial discrepancies appear beyond 45 keV. With the
present results, we obtain an s-process contribution of 77(8)% to the solar
abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which
is important for deriving the U/Th ages of metal poor halo stars.Comment: 7 pages, 3 figures, to be published in Phys. Rev.
Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications
The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF
facility with high resolution in the energy range from 1 eV to 600 keV by using
two optimized C6D6 detectors. In the investigated energy interval about 130
resonances could be observed, from which 61 had enough statistics to be
reliably analyzed via the R-matrix analysis code SAMMY. Experimental
uncertainties were minimized, in particular with respect to (i) angular
distribution effects of the prompt capture gamma-rays, and to (ii) the
TOF-dependent background due to sample-scattered neutrons. Other background
components were addressed by background measurements with an enriched 208Pb
sample. The effect of the lower energy cutoff in the pulse height spectra of
the C6D6 detectors was carefully corrected via Monte Carlo simulations.
Compared to previous 206Pb values, the Maxwellian averaged capture cross
sections derived from these data are about 20% and 9% lower at thermal energies
of 5 keV and 30 keV, respectively. These new results have a direct impact on
the s-process abundance of 206Pb, which represents an important test for the
interpretation of the cosmic clock based on the decay of 238U.Comment: 11 pages, 8 figures, paper to be submitted to Phys. Rev.
Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF
Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV
Cross section measurements of 155,157Gd(n, Îł) induced by thermal and epithermal neutrons
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) à 10 - 4 and 2. 17 (41) à 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
The 33S(n,α)30Si cross section measurement at n-TOF-EAR2 (CERN) : From 0.01 eV to the resonance region
The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n-TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)
- âŠ